- OEM / SystemsOEM Systems | Precision Components | Automation Sub-SystemsPI offers 1000’s of proven, off-the-shelf precision motion products that can be quickly modified for the OEM or into a custom automation sub-system.
- Meeting the Demands of OEMsOEM Systems | Precision Components | Automation Sub-SystemsPI has a long track record of working with OEMs in the most demanding industries from Semiconductor Technology to Medical Design – industries where product performance, quality, and the ability to ramp up quickly are not the only parameters required to satisfy the customer's demands. Working with technology leaders all around the world forces you to continuously improve your yield, process, and product performance. And unless your quality is outstanding, you cannot become a key supplier to major US, European, and Japanese companies in the Optics, Photonics, Semiconductor, and Automotive industry.
- Engineered Motion / Automation Sub-SystemsPrecision Automation Solutions | Engineered SystemsPI is a supplier of high-end precision motion systems and makes use of own drive components and high-precision positioners to build customized positioning and automation sub-systems —“motion engines”—for our customers. With the largest portfolio of precision motion technologies in the industry, PI engineers have the best foundation to find a solution that matches your requirements in terms of precision, quality and budget – in a timeframe that works for you.
- Meeting the Demands of OEMs
- ProductsPrecision Motion Technologies | Positioning SystemsOverview of the Broadest & Deepest Portfolio of Precision Motion and Automation Technologies from Piezo to Air Bearings and Linear Motors
- Products: Overview, New, Finder, ShopFind Precision Positioning Solutions Quickly - Product Finder | PI USAWith thousands of standard products and customization available, PI has the motion control positioning product solution for your application.
- Products OverviewProducts OverviewOverview of the Broadest & Deepest Portfolio of Precision Motion and Automation Technologies from Piezo to Air Bearings and Linear Motors
- New ProductsNew Motion Control & Precision Positioning Products | PI USALearn about the latest innovations in motion control and nanopositioning components and systems.
- Product FinderUse the PI Product Finder - it's fast and easy!Select the product type specified by the axes of motion required. Selection of more criteria expands or shortens the list of results. Select more than one filter at at time, for example, to find positioning stages designed for higher load capacity, too.
- ► Shop► ShopShop for select PI products online
- Products Overview
- Air Bearings & Ultra High Precision StagesAir Bearing Stages | Motorized | Linear | RotaryAir bearings provide advantages over mechanical bearings when vibration-free motion is required, highly constant velocity control is crucial, and when angular repeatability and geometric performance must be optimal. Air bearing stages (linear, rotary, and spherical) replace mechanical contact by a thin air film, avoiding wear, friction, vibration, and hysteresis effects.
- Miniature Positioning StagesMiniature Positioning Stages | Supplier | ManufacturerCompact positioning stages are crucial for the miniaturization process in cutting-edge research and industrial applications, for test & measurement, optical and opto-mechanical alignment, and component assembly. PI provides the largest portfolio of miniature stages, including high-speed linear motor stages, economical stepper motor units, and ultra-compact piezo motor positioners.
- Motorized Stages: Linear, Rotary, XYMotorized Stages | Positioning | ManufacturerPI offers the broadest and deepest range of precision motion technologies for micro and nano precision applications. Our engineers work with our customers to find the best drive and bearing technology for each individual application. Having access to multiple drive and positioning technologies allows an open discussion with a better outcome for the customer.
- Overview - Motorized Linear/Rotary StagesOverview - Motorized Linear/Rotary Stages
- Linear StagesLinear Stages - Precision Positioning Solutions | PI USASeveral types of motorized precision linear translation stages | PI USA
- Fast Linear Motor Stages and ActuatorsOverview: Linear Stage, Linear Motor Driven, Fast Brushless Motor Positioning Stages | PI USABrushless linear motor-driven stages provide high speed, precision and long life.
- Z-Stages (Vertical Motion)Vertical Linear Stages – Precision Motorized Z-Positioners | PI USA
- XY StagesXY Stages – 2-Axis Motorized Precision Positioning Stages | PI USASeveral types of planar XY stages: Direct-driven stages, ball-screw stages and air bearing planar XY stages
- XYZ StagesXYZ Stage - Multi-Axis Precision Motorized Stages
- Rotary Stages / GoniometersPrecision Rotation Stage, High Resolution Rotary Positioners, Rotation Tables, Goniometers, by PI USASeveral types of motorized rotation stages: Direct-driven stages, ball-bearing stages and air bearing stages
- Heavy Duty Stages / Industrial AutomationHigh Speed / Performance Positioning Stages for Automation - Linear Stages | Rotary Stages | PI USAHigh performance motorized stages, designed for heavy duty applications in industrial precison automation.
- Sub-Systems for AutomationSYS > Engineered Motion/Automation Sub-SystemsThe PI group employs over 1,200 people in 15 countries and runs engineering and manufacturing centers on 3 continents. Select from the broadest portfolio of precision motion technologies, including piezoelectric and air bearing systems, with 1,000’s of standard products or have our engineers provide you with a custom solution.
- Overview - Motorized Linear/Rotary Stages
- Linear ActuatorsActuators | Precision | Linear | Actuator SystemA precision linear actuator is a positioning device that provides motion in 1 degree of freedom. PI designs and manufactures a variety of precision linear actuators (pushers) including economical stepper-motor driven actuators, high-speed linear motor types for automation and nanometer precise piezo-motor actuators.
- Gantries / Cartesian RobotsGantry Stages | Gantries | Cartesian RobotA gantry precision positioning stage is sometimes called a linear robot or Cartesian robot. Gantries typically provide motion in 2 or 3 linear degrees of freedom (X-Y and X-Y-Z) and are often used for pick and place applications, 3D printing or laser machining, and welding applications.
- 6-Axis Hexapods / Parallel PositionersHexapod Positioner | Six DOF | Stewart PlatformsHexapod positioners are often referred to as Stewart Platforms. A hexapod is based on a 6-axis (XYZ, Pitch, Roll, Yaw) actuator system arranged in parallel between a top and bottom platform. PI parallel kinematics (PKM) precision positioning systems have many advantages over serial kinematics stages, such as lower inertia, improved dynamics, smaller package size and higher stiffness. In addition hexapods are more flexible than conventional 6 axis positioners.
- 6-Axis Hexapods / Parallel Positioners6-Axis Hexapods / Parallel Positioners
- Control of Hexapod / Stewart Platforms: Hexapod Motion Controllers & Simulation Software6DOF Motion Platforms | Hexapod Controllers & Simulation Software | Stewart Platform | ManufacturerControllers, software and accessories for Hexapod Stewart platforms and parallel kinematic motion systems | PI USA
- 6-Axis Hexapods / Parallel Positioners
- Piezo Flexure Nanopositioning StagesNanometer Precision: Piezo Stages for Nanopositioning, Piezo Nanopositioners, Piezo Flexure Scanning Stages | PI USAPI offers the broadest and deepest portfolio of nanometer precision motion technologies, from piezo-driven nanopositioning and scanning stages to motorized 6-axis hexapod positioning systems.
- Overview - Piezo Flexure StagesOverview - Piezo Flexure Stages
- Linear Piezo Flexure StagesLinear Piezo Stages for Nanopositioning – Flexure-Guided Precision NanoPositioners | PI USALargest selection of frictionless, high performance piezo-stack-driven flexure linear nanopositioning stages | PI USA
- Vertical & Tip/Tilt Piezo StagesPiezo Z-Stage, Piezo Z-Tip-Tilt Platform. Flexure Guided Nanopositioning Stages| PI USALarge selection of Piezo Z-Stages and Tip/Tilt scanners with nanometer precision | PI USA
- Fast Steering Mirrors & Tip/Tilt PlatformsPiezo Steering Mirrors | Active Optics
- Nanofocus Lens ScannersFast Piezo Focus Lens Positioners and Scanners – Piezo Flexure Guided Precision Positioners | PI USALargest Selection of Nano-Focus drives for microscope lenses – flexure-guided precision positioners
- XY Piezo Flexure StagesPiezo Stages | XY | Nanopositioning StagesLargest selection of integrated XY piezo flexure stages with nanometer precision.
- XYZ Piezo Flexure StagesXYZ Piezo Nanopositioning Stages – Flexure Guided 3-Axis Precision Positioners | PI USALargest selection of integrated XYZ piezo flexure stages with nanometer precision.
- 6-Axis Piezo Flexure Stages6-Axis Piezo Nanopositioning Stages – Flexure Guided Precision Positioners | PI USAPiezo-driven fast steering mirrors (FSM) achieve nanoradian resolution and high bandwidth.
- Tutorial - Piezo NanopositioningNanometer Precision: Nanopositioning Basics Tutorial. Piezo Nanopositioners, Scanning Stages, Flexure Guided Positioners | PI USAThere are several ways to achieve nanometer precision motion. The best positioning systems avoid friction all together, in both the drive system (motor) and in the guiding system (bearings). Frictionless bearings also avoid the bearing rumble caused by balls and rollers and provide vibration-free motion with highly constant velocity.
- Overview - Piezo Flexure Stages
- Piezo Motors: Stages & ActuatorsPiezo Motors | Linear Motor Positioners | ManufacturerPiezo Motors are intrinsically vacuum compatible, non-magnetic and self locking at rest, providing long travel compared to traditional piezo mechanisms. The individual drive concepts are optimized for different applications, they differ in their design, size, cost, force & speed and other performance parameters.
- Overview - Piezo Motors (Stages/Actuators)Overview - Piezo Motors (Stages/Actuators)
- Actuators with Piezo MotorsCompact precision linear actuators stages with several types of piezo motor drives – ultrasonic, stick-slip, piezo-walk, piezo-ratchet. | PI USA
- Linear Stages with Piezo MotorsPrecision linear stages with several types of piezo motor drives – ultrasonic, stick-slip, piezo-walk, piezo-ratchet. | PI USA
- XY Stages with Piezo MotorsXY piezo motor linear stages with several types of precision piezo motor drives – ultrasonic, stick-slip, piezo-walk | PI USA
- XY Piezo Flexure StagesXY Piezo Flexure StagesHigh-precision 2-axis nanopositioning systems integrate PICMA® piezo actuators for maximum reliability. Repeatable, drift-free positioning with optimal stability is possible by the use of high-quality nanometrology sensors.
- Rotary Stages with Piezo MotorsRotary piezo motor stages with several types of precision piezo motors– ultrasonic, stick-slip (inertia), | PI USA
- Tutorial - Piezo Motion ControlWhy All Piezo Motors are NOT Created Equal: The piezoelectric effect for precision motion control - PI Physik Instrumente.The demand for higher speed and/or precision in fields such as bio-nanotechnology, semiconductors, metrology, data comm, and photonics keep pushing manufacturers to come up with innovative drive technologies.
- Overview - Piezo Motors (Stages/Actuators)
- Piezo Transducers & ActuatorsPiezo Actuator | Piezo Transducer | ManufacturerPiezoelectric translators (transducers) are precision ceramic actuators which convert electrical energy directly into linear motion with high speed, force and virtually unlimited resolution. These actuators are used in every modern high tech field from semiconductor test & inspection to super-resolution microscopy, bio-nanotechnology and astronomy/aerospace technology.
- Piezo Actuators & Transducers: Stacks, Chips, Benders, Tubes, Spheres, Shear…Piezo Actuators & Transducers: Stacks, Chips, Benders, Tubes, Spheres, Shear…
- Value-Added Piezo Transducers & Piezo AssembliesValue Added Piezo Assemblies: Transducers, Actuators, Sensors, Manufactured by PI CeramicDeveloping and manufacturing piezo ceramic materials and components are complex processes. PI Ceramic - PI’s piezo material design and manufacturing facility - boasts several decades of experience as well as the right tools for rapid prototyping of custom engineered piezo components and assemblies. From the formulation of advanced piezo materials to the processing steps such as cutting, milling, grinding, and the precision assembly, every stage is controlled by our engineers and product specialists.
- Piezo Ceramic ComponentsPiezo Ceramic Components
- Piezo Actuators & Transducers: Stacks, Chips, Benders, Tubes, Spheres, Shear…
- Microscopy, Bio-Imaging, Life SciencesHigh Precision Microscope Stages, Piezo Lens Scanners, Tools for Bio-Imaging | PI-USAPiezo nano-positioning stages are essential tools for high-resolution microscopy, such as Super Resolution Microscopy or AFM. Their sub-atomic resolution and extremely fast response allow researchers to create higher-quality images faster. PI provides a large variety of fast Z-Stages and collar piezo objective positioners for 3D imaging (Z-stack acquisition), deconvolution, and fast focusing applications.
- Stages for Microscopy & Bio-ImagingStages for Microscopy & Bio-Imaging
- Applications: Life Sciences / MedicalPrecision motion control for medical engineering and life sciences applications | PI USA
- Stages for Microscopy & Bio-Imaging
- Photonics Alignment SolutionsActive Photonics Alignment | Optics Alignment | SolutionsPI provides a variety of innovative fiber alignment systems from motorized fiber positioners to automated optic and photonic alignment such as used in telecommunication, data commumication and for packaging / automation. In addition to fiber-based applications, fast steering systems for free-space-optical communication are also available. Products range from motorized 6D micromotion alignment systems for industrial photonics automation, through ultra-fast piezoelectric scanning & alignment modules to modular devices with manual control for laboratory test setups. All motorized systems come with extensive software for easy setup and integration.
- Vacuum Positioning Stages & ActuatorsVacuum / UHV Compatible Stages - Linear & Rotary Positioners for Vacuum, Wide Temperature Ranges | PI USAPI miCos has extensive experience in the design and manufacturing of vacuum and high vacuum compatible precision optomechanical positioning equipment for low temperature and wide temperature ranges. We provide translation stages, vertical linear stages, rotation stages, XY stages and complex multi-axis positioning systems in vacuum spec.
- VacuumProduct Series with Vacuum-Ready ItemsPI offers specific catalogue items for selected product series that are already suitable for high vacuum (HV) or ultra-high vacuum (UHV).
- Vacuum
- Controllers, Drivers, Motion SoftwareMotion Controllers, Piezo Drivers-High Voltage Amplifiers, and Motion Software Overview | PI USA
- Overview - Controllers & Motion SoftwareOverview - Controllers & Motion Software
- Piezo Controller, Driver, Nanopositioning Controller, High-Voltage Amplifier, Piezo Power Supply by PI USAPiezo Drivers | Piezo Motion Controllers | ManufacturerA piezo controller or driver is used to control the motion of a piezo positioning device. There are open and closed loop controllers. Open-loop controllers are often referred to as piezo driver or even piezo power supply. Closed-loop controllers are divided in two basic types: analog-servo and digital servo controllers.
- Controllers/Drivers for Motorized StagesMotion Controller | Drivers | Positioning SystemsPI provides a large variety of hardware & software solutions for high precision motion control. Our portfolio spans from integrated compact single axis servo controllers / drivers, such as popular Mercury-class motion controllers, to complex multi-axis systems for parallel-kinematics positioners, such as hexapods.
- ACS Motion ControlACS Motion Control for Industrial AutomationWe recommend the controllers of our partner, ACS Motion Control especially for automation with industrial standards. Ask us about your integrated solution!
- Software - Motion Control SoftwareMotion Control Software | Software Tools | Positioning SolutionsFor LabView, C++, VB, Matlab, Image Acquisitiong Packages, NI DAC Cards, ..... PI provides high-level, robust, easy-to-use software tools for fast, seamless integration of motion systems into application control software.
- Overview - Controllers & Motion Software
- Capacitive SensorsNanometer Resolution: Capacitance Sensors for Nano-Measuring, Nano-Metrology | PIA capacitive sensor is a proximity sensor that detects nearby objects by their effect on the electrical field created by the sensor.
- Accessories: Plates, Brackets, CablesAdapters and Cables for PI Precision Motion ComponentsStandardization is common with adapter plates and brackets, but we can create a custom accessory to fit your application system. PI products ship with the required cables. Customization is always an option.
- Products: Overview, New, Finder, Shop
- Tech BlogPI Blog / Tech Articles on Advancements in Precision Motion Control, Automation and Piezo Technology | PI USAPI’s tech blog offers 50 years of insight into innovative applications of precision motion control, nanopositioning, and micropositioning in industry, science, and research. We hope the PI blog is an enjoyable and informative resource, and a starting-point for innovation across disciplines.
- Resources
PI – Resources – Papers, Videos, ISO9001, Service, DownloadsFind Tech Articles, Videos, Papers, Brochures, Software Information, ISO9001 Certificates and more.- Ask an Engineer (direct email request)Ask an Engineer (direct email request)
- User Manuals, Software, WhitepapersUser Manuals, Software, WhitepapersFind product documentation & software, catalogs & brochures, whitepapers & success stories.
- Catalogs & BrochuresDownload Catalogs on Precision Motion Control and Nanopositioning ProductsFind brochures and catalogs for download.
- ISO 90001 CertificatesISO 90001 CertificatesView PI's active ISO certificate
- Metric Tolerances & Thread PitchMetric Tolerances & Thread PitchView metric tolerances and thread pitch classifications
- Motion Control SoftwareMotion Control SoftwarePI provides high-level, robust, easy-to-use motion control software tools for fast, seamless integration of motion systems into application control software. Supported programming languages and applications include LabView, C++, VB, Matlab, Image Acquisitioning Packages, NI DAC Cards, ...
- News & EventsNews & EventsFind PI press releases, enews, and tradeshow exhibit schedule where you can get free advice from a PI Engineer.
- SeminarsFree Seminars on Precision Motion Control / Automation – Motorized and Piezo-Based Solutions | PI USA
- ServicePI – Global Customer Services
- On-Site ServicesOn-Site ServicesThe PI Global Services Division (GSD) is a team of PI skilled after-sales support engineers located around the world, dedicated to providing world class customer support.
- Extended WarrantyExtended Warranty
- Ask an EngineerAsk an EngineerQuickly receive an answer to your question by email or phone from a local PI sales engineer.
- Request ServiceRequest ServiceQuickly receive an answer to your question by email or phone from a local PI sales engineer.
- DownloadsDownloadsFind interesting downloads: Product documentations, brochures, catalogs, certificates, success stories, whitepaper and PI Update Finder.
- Expert Consultancy from PIExpert Consultancy from PIIf our customers need to solve a complex problem, they often require individual advice. We are happy to come and advise you on site.
- On-Site Services
- Tech BlogTech BlogPI’s tech blog offers over 40 years of insight into innovative applications of precision motion control, nanopositioning, and micropositioning in industry, science, and research. We hope the PI blog is an enjoyable and informative resource, and a starting-point for innovation across disciplines.
- Technical Papers / WhitepapersTechnotes & Whitepapers / Application Articles: Piezo / Micro- / Nanopositioning Motion Control: Technical Research PaperPI precision motion and positioning solutions have helped customers in many industrial fields and research laboratories to achieve their goals faster. Feel free to download the papers below.
- Videos & AnimationsVideos on Motion Control and Positioning Technologies | PI USAWatch videos, animations and practical applications of PI products, systems, components
- WebinarsWebinarsWebinar topics include piezo mechanisms, adaptive machines, automation manufacturing advancements, photonics assembly & packing concepts.
- Apps/Tech
Technologies and Applications for Precision Motion Components and Sub-Systems | PI USAPI products are often used at the cutting edge of technology. They solve critical motion problems in lithography, microscopy, astronomy, laser technology, photonics and semiconductor manufacturing on locations around the world and in places as remote as the Science Lab on the Mars Rover.- News/Events
PI - Webinars On-Demand, Company Announcements, New Products for Precision Motion ControlStay up-to-date with the latest PI news, view our webinars on-demand, see product demos or virtual tradeshows, or connect with a PI engineer.- News & EventsNews & EventsStay up to date with the latest PI news, or plan on talking to a PI engineer at a tradeshow.
- Product Demos / Virtual TradeshowsProduct DemosCheck out PI's product demos that you would have seen at a conference or tradeshow.
- WebinarsMotion Control On-Demand WebinarsWebinar topics include piezo mechanisms, adaptive machines, automation manufacturing advancements, photonics assembly & packing concepts
- About
About PI USA: Custom design & service / export controlled applications & ITAR RegisteredPI (Physik Instrumente) provides the broadest and deepest portfolio of precision motion technologies in the world. PI USA complies with the US laws for export controlled technologies.- AboutAbout PI USA / Custom design & service / export controlled applications & ITAR RegisteredPI (Physik Instrumente) provides the broadest and deepest portfolio of precision motion technologies in the world. PI USA complies with the US laws for export controlled technologies.
- Online Contact FormOnline Contact FormLooking for product information, datasheets, CAD files? Want to have a brainstorming consultation? Need an RMA? Have questions about your order? Request a catalog? Contact us! We're here to help you.
- Directions to PI USA OfficesDirections to PI (Physik Instrumente) USA Offices – Global Leader in Precision Motion Control Solutions
- Ask an Engineer (direct email)Ask an Engineer (direct email)Talk to our engineers first. They have access to in-depth knowledge and test data on diverse driving and guiding technologies, spanning from electromagnetic to piezoceramic and from mag-lev to air bearings. They also have experience selecting the right technology for each individual application. Often an adaptation of existing technologies/products will suffice to solve a problem. However, experience along with detailed knowledge and PI’s significant R&D investment in new technologies enables our engineers to take unique approaches.
- Request a SeminarRequest a Seminar
- News & EventsNews & Events
- CareersCareers at PI - Join the Global Leader in Precision Motion & Positioning TechnologiesPI offers sound training in technical and business careers with a future. Pupils, students, graduates and professionals can get involved at PI and will be supported by us in their professional and personal further development.
- ITAR / Export Controlled ApplicationsPI-USA: ITAR registered, motion control for defense applications, security, COTS, custom US based design, by PI USA
- Test & Metrology / Manufacturing Equipment / CleanroomsLearn what Nano-Metrology Equipment is Used to Test High-Performance Motion & Positioning Systems
- Test & Metrology / Manufacturing Equipment / Cleanrooms OverviewTest & Metrology / Manufacturing Equipment / Cleanrooms Overview
- Manufacturing in Cleanrooms at PIManufacturing in Cleanrooms at PIPI has the capability to manufacture and qualify products under cleanroom conditions, which is extended and improved continually according to market needs.
- Fractal Manufacturing Structure at PIFractal Manufacturing Structure at PIPI manufactures in autonomous organization fractals. Each unit is responsible for its own product line, has all the necessary skills and production equipment.
- Test & Metrology / Manufacturing Equipment / Cleanrooms Overview
- Watch PI Product Videos on YouTubeWatch PI Product Videos on YouTubeUse PI product videos as a resource for how you can apply our precision motion control technology to your application. Then, talk to a PI Engineer about how to make it happen.
- Connect with PI on LinkedInConnect with PI on LinkedInConnect with PI USA on LinkedIn
- Follow PI on TwitterFollow PI on TwitterFollow PI on Twitter
- PI WorldwidePI WorldwideThe PI Group represented by subsidiaries and dealers all over the world. Check here to find your local contact!
- Ask an Engineer
Get Help from a PI Engineer*Save Time & Headaches – Get Free Advice from a PI Engineer* Tap into our engineers’ collective knowledge base – not only is it free, but it also saves hours of your valuable time while preventing plenty of headaches in the future.- Contact
ContactLooking for product information, datasheets, CAD files? Want to have a brainstorming consultation? Need an RMA? Have questions about your order? Request a catalog? Contact us! We're here to help you.- Shop
ShopShop for select PI Motion Control, Positioning and Piezo Solutions products online- Buy Motion Control, Positioning and Piezo Solutions OnlineBuy Motion Control, Positioning and Piezo Solutions OnlineShop for select PI Motion Control, Positioning and Piezo Solutions products online (select products)
- 0Quote list
- Search
Much has changed since the first optical microscope was designed in the late 16th century by Hans and Zaccharias Janssen, two Dutch spectacle makers. For the first time, their invention put multiple lenses to use, resulting in much higher magnifying power than a single lens could achieve.
For almost 400 years optical microscopy did not require precision motion control and its resolution was bound by the diffraction limit.
3D Imaging / Confocal Scanning Microscopy
3D imaging techniques allow users to take slices of images to build up three dimensional images. Confocal laser scanning microscopy (CLSM) was one of the first methods to provide high-resolution 3D images. Originally patented in 1957, the breakthrough came with the broad availability of the laser in the early 1970’s. Based on a laser scanner, and a way to shift the distance of the focal plane and light source, confocal imaging increases contrast by blocking out-of-focus light by means of pinholes. The pinholes allow imaging of individual slices with great detail and software can create a 3 dimensional image out of so-called image stacks. Compared to the original microscope, the modern CLSM cannot work without a precise scanning apparatus (galvo-scanners, piezo-scanners) and electronic control. While providing many benefits over classical microscopy, CLSM is not quite considered a super-resolution technique.
Basic principle of confocal imaging (Source: Danh, Wikipedia) Microscopy Evolves to Nanoscopy
A big step forward came with the scanning near-field optical microscope (SNOM or NSOM) in the 80’s of the last century. NSOMs rely on a small tip with subwavelength aperture scanned across the surface while maintaining a precise distance between the tip and the sample in the nanometer realm. In contrast to scanning probe, Atomic Force Microscopy (AFM) near-field microscopes provide spectral information – especially critical for biological samples – and sometimes they are combined with AFM. For SNOM to work, nano-precision mechanisms are required, for both the scanning apparatus and to control the tip to sample distance. While SNOMs gather optical information, they are quite different from other optical super-resolution microscopes developed later. More information on SNOM
(left) Nucleus of a rat liver cell, captured with near-field scanning microscope (Image: WITec) (right) Principle of near field optics used in NSOM: to break the diffraction limit, both aperture and work distance have to be significantly smaller than the wavelength of the used light. (Image: Wikipedia, Zogdog602) Working principle of a STED microscope: excitation focus (left), de-excitation focus (center), and remaining fluorescence. (Source: Marcel Lauterbach, Wikipedia) With the capability to see details way beyond a micrometer in size, microscopy had evolved to nanoscopy. Another breakthrough came in 1994 when Stefan Hell published an article proposing a super resolution microscopy method, so-called stimulated emission depletion (STED). Hell had worked at Heidelberg Instruments trying to adapt a CLSM to measure transparent 3D photoresistive microstructures for the semiconductor industry with dimensions on the same order as the wavelength of light. What did not quite work with CLSM inspired him to find new ways of thinking beyond the diffraction limit. In STED microscopy, an annular laser beam excites fluorescence only in a nanometric volume at a time. By scanning the beam precisely with mechanisms capable of nanometer resolution and correlating the exact position with the optical data collected, a super-resolution (SR) image is created. With SR microscopy, single molecule imaging was made possible. W. E. Moerner and Eric Betzig who received the 2014 Nobel Prize in Chemistry together with Stefan Hell made large contributions to the development of this technique.
Basic design of an adaptive optics STED microscope (from Adaptive optics enables 3D STED microscopy in aberrating specimens by Travis J. Gould, Daniel Burke, Joerg Bewersdorf, and Martin J. Booth). Adaptive optics helps to correct aberrations often caused by biological samples. Image OSA Publishing, www.osapublishing.org/oe/fulltext.cfm?uri=oe-20-19-20998&id=241056 Learn more About the same time, another technique, called 4PI microscopy, was demonstrated experimentally by Stefan Hell. 4PI microscopy takes advantage of dual juxtaposed objectives to illuminate the sample from both sides at a common focal plane. The resulting constructive and destructive interference improves the axial resolution and produces a sharper image in axial and lateral dimensions.
Today, there are a number of super resolution microscopy techniques that enable a user to image below the diffraction limit of a conventional light microscopy system. A recent super-resolution microscopy system that allows deep views into subcellular structures is called “Whole Cell Imaging 4PI Single-Molecule Switching Nanoscopy” (W-4PiSMSN) (Huang et al, 2016). This technique overcomes the diffraction by combining on/off-switching of single fluorescent molecules with individual localization of their positions. With this technique, imaging of 3D structures with a resolution of 10-20nm can be achieved. For more information see: http://www.ncbi.nlm.nih.gov/pubmed/27397506
An application of the P-612 piezo Z-stage (vertical motion) is described in this article “Mechanical Characterisation of brain tissue up to 35% strain at 1, 10, and 100/s using a custom-built micro-indentation apparatus”
(left) P-612: a compact XY nanopositioning stage based on piezo drives and frictionless flexure guides: 100µm travel range (right) N-664: a linear nanopositioning stage, based on a PiezoWalk linear motor, combines piezo-class resolution with long travel ranges found in traditional positioning stages. The piezo motor is inherently stiff and self-clamping, providing better position stability compared to traditional drive technologies. (Image: PI) In this multi objective system, alignment of two opposing objectives is required. Precision lateral alignment of the two objectives, straightness of travel and stability are all important items that need to be addressed in this system. Lateral resolution of 5nm was achieved with a P-612.2SL XY stage (NOTE: Even higher lateral resolution can be achieved with a P-763.22C). Separating the two objectives for sample loading, the N-664.3A piezo linear stage was used with 0.5nm resolution over 16mm of travel. This stage allowed the ability to return to the focal plane with nanometer accuracy after loading the sample.
(left) Piezo nano-precision mechanisms have come a long way, but so have controllers. Advanced digital algorithms, such as used in the E-727, improve resolution, stability, linearity and settling behavior. (right) PInano® P-545 XYZ scanning stages find use in single molecule bio-imaging and DNA stretching applications, such as described in this recent article on DNA‐doxorubicin interaction. (Image: PI) Learn more PhotoGate Microscopy
A new technique in single molecule biophysics, called PhotoGate microscopy, allows tracking of single molecules in highly dense environments such as inside cells where traditional single molecule microscopy techniques have limitations and PhotoGate microscopy can yield longer tracking times and produce more accurate measurements using photobleaching to control the number of fluorescent particles.
The physics behind the technique and results are described in this article “PhotoGate microscopy to track single molecules in crowded environments” from the Biophysics Graduate Group, University of California, Berkeley.
Digital Light Sheet Microscopy (DLSM) Selective or Selective Plane Illumination Microscopy (SPIM)
Digital Light Sheet Microscopy (DLSM) / Lattice Light-Sheet Microscopy (LLSM) or Selective Plane Illumination Microscopy (SPIM) is a fast optical-sectioning fluorescence technique allowing for 3D volume imaging under the diffraction limit. Light sheet microscopy reduces photodamage caused by long exposure to high laser intensity to cells (such as is common with confocal microscopy), a significant advantage for research on biological processes in live cells. The illumination in LSM happens 90 degrees to the direction of observation, with only the focal plane (typically <1um thick) of the sample exposed to laser light for the time required for imaging.
Light sheet microscopy reduces image acquisition time and photobleaching because it eliminates out-of-focus excitation and spreads the laser light energy over the entire field compared to a single point as common in traditional fluorescence microscopies. The speed of LSM is a great advantage for acquiring 3D images and in some cases has enabled real time video imaging – a key to better understanding the biological development process over time.
Important areas to consider for light sheet systems is the spatial resolution, temporal resolution, scanning area, and long term imaging stability. Longer data collection time requires good mechanical design with low-drift.
There are several designs of light sheet microscopes: isotropic multi-view light-sheet microscopy, lattice light-sheet microscopy, dual-view light-sheet microscopy, etc.
A PIHera P-622.ZCD piezo Z-stage for vertical nanopositioning control is used in this tutorial video on "Setting Up a Simple Light Sheet Microscope for In Toto Imaging of C. elegans Development”.
The largest reported imaging volume was achieved with an isotropic multi-view light-microscope (Chhetri et al.) at 830x400x400µm, based on a piezo scan range of 800μm such as theP-628.1CD PIHera piezo linear stage. This type of LSM can be used for highly dynamic, high-resolution imaging of large embryos in XYZ. A detailed paper on the design is here.
Additional information on designs and applications also for smaller volumes can be found in this review Emerging Imaging and Genomic Tools for Developmental Systems Biology, by Zhe Liu and Philipp Keller, available here.
A patent application by Nobel Prize winner Eric Betzig is titled Bessel Beam Plane Illumination Microscope.
Often a piezo nano-focus device, such as the P-726 nano-positioner, is used to image each plane in focus. An article of on Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets is published here. The P-726 is also referenced in this article “Remote refocus enables class-leading spatiotemporal resolution in 4D optical microscopy”.
Another axial focusing application of a z-piezo focusing device can be found in this article: Single cell adhesion strength assessed with variable-angle total internal reflection fluorescence microscopy
(left) P-725, long-travel piezo-flexure driven objective positioner (right) P-726 is a stiffer design especially for heavy high NA objectives. Both provide sub-nanometer resolution and millisecond response and settling. (Image: PI) Several open source light sheet microscope systems make use of high precision motorized sample stages.
One of the recent examples is the mesoSPIM initiative, optimized for 3D cleared tissue imaging.The IsoView Light Sheet Microscope was developed by Philip J. Keller and his research team at Janelia Research Campus of the Howard Hughes Medical Institute in Ashburn, Virginia (USA). Keller and his colleague Raghav K. Chhetri developed a new instrument that can image a sample simultaneously from four directions - with high speed and high spatial resolution.
The IsoView microscope has four orthogonally positioned arms for a simultaneous light sheet illumination and fluorescence detection. The specimen is located at the center of the arrangement. For volumetric imaging, light sheets sweep across the sample and generate fluorescent lighting that can be captured by the detection plane. (Image: HHMI, Janelia Research Campus / Keller Lab) More information on the nanopositioning stages used in the IsoView microscope.
Photo Thermal Microscopy (PTM)
Basic design of a photothermal microscope: the sample can be scanned with a piezo stage. (Source: D. J. Nieves, Y. Li, D. G. Fernig, R. Lévy) Learn more While a large portion of the modern optical microscopy types are based on fluorescence, photothermal optical microscopy, which uses absorption instead, can detect non-fluorescent labels in single molecules. Two laser beams are required, one for heating the target and one detector-beam. Bio-medical applications can benefit from the high resolution, which can be further improved when combined with confocal 3D scanning techniques. Benefits of PTM are the high signal to noise ratio and the saved effort for cell staining. A recent paper by He et al, explains the use of PTM in skin cancer research. Read more here.
P-622.ZCL is a low-profile piezo-nanopositioning Z scanning stage that finds applications in confocal PTM. (Image: PI) Blog Categories
- Aero-Space
- Air Bearing Stages, Components, Systems
- Astronomy
- Automation, Nano-Automation
- Beamline Instrumentation
- Bio-Medical
- Hexapods
- Imaging & Microscopy
- Laser Machining, Processing
- Linear Actuators
- Linear Motor, Positioning System
- Metrology
- Microscopy
- Motorized Precision Positioners
- Multi-Axis Motion
- Nanopositioning
- Photonics
- Piezo Actuators, Motors
- Piezo Mechanics
- Piezo Transducers / Sensors
- Precision Machining
- Software Tools
- UHV Positioning Stage
- Voice Coil Linear Actuator
- X-Ray Spectroscopy
USA / Canada
contact@pi-usa.usEAST
(508) 832-3456
MIDWEST
(508) 832-3456
WEST
(949) 679-9191 (LA Area & Mexico)
(408) 533-0973 (Silicon Valley/Bay Area) - Resources