Q-845 Q-Motion ${ }^{\circledR}$ SpaceFAB

High Precision and High Stiffness

Top view of the Q-845.140, dimensions in mm. The reference position corresponds to the center position of all axes.

- Six degrees of freedom

■ $\pm 7 \mathrm{~mm}$ travel range in X and Y , and $\pm 5 \mathrm{~mm}$ in Z

- $\pm 7^{\circ}$ rotation range in θ_{x}, θ_{y}, and $\pm 8^{\circ}$ in θ_{z}
- 10 N load capacity, center mounted
- Self-locking, no heat generation at rest
- Crossed roller guides, anti-creep
- Vacuum-compatible to $10^{-6} \mathrm{hPa}$

Bottom and side view of the Q-845.140, dimensions in mm. The reference position corresponds to the center position of all axes.

[^0]| | Q-845.140 | Unit | Tolerance |
| :---: | :---: | :---: | :---: |
| Motion and positioning | | | |
| Active axes | $X, Y, Z, \theta_{X}, \theta_{Y}, \theta_{Z}$ | | |
| Integrated sensor | Incremental linear encoder | | |
| Travel range* in X, Y | ± 7 | mm | |
| Travel range* in Z | ± 5 | mm | |
| Rotation range* in θ_{X}, θ_{Y} | ± 7 | - | |
| Rotation range* in θ_{z} | ± 8 | - | |
| Sensor resolution | 1 | nm | |
| Minimum incremental motion in X, Y | 6 | nm | typ. |
| Minimum incremental motion in Z | 20 | nm | typ. |
| Minimum incremental motion in $\theta_{X}, \theta_{Y}, \theta_{Z}$ | 0.9 | $\mu \mathrm{rad}$ | typ. |
| Unidirectional repeatability in X, Y | ± 30 | nm | typ. |
| Unidirectional repeatability in Z | ± 35 | nm | typ. |
| Unidirectional repeatability in θ_{X} | ± 20 | $\mu \mathrm{rad}$ | typ. |
| Unidirectional repeatability in θ_{Y} | ± 10 | $\mu \mathrm{rad}$ | typ. |
| Unidirectional repeatability in θ_{Z} | ± 6 | $\mu \mathrm{rad}$ | typ. |
| Backlash in X,Y | 40 | nm | typ. |
| Backlash in Z | 60 | nm | typ. |
| Backlash in θ_{X}, θ_{Y} | 35 | $\mu \mathrm{rad}$ | typ. |
| Backlash in θ_{z} | 20 | $\mu \mathrm{rad}$ | typ. |
| Max. velocity in X, Y, Z | 5 | mm / s | max. |
| Max. angular velocity in $\theta_{X}, \theta_{Y}, \theta_{Z}$ | 50 | $\mathrm{mrad} / \mathrm{s}$ | max. |
| Mechanical properties | | | |
| Stiffness in X,Y | 1 | $\mathrm{N} / \mu \mathrm{m}$ | |
| Stiffness in Z | 2 | $\mathrm{N} / \mu \mathrm{m}$ | |
| Load capacity in X, Y | 5 | N | max. |
| Load capacity in Z (base plate horizontal) | 10 | N | max. |
| Holding force, power off (base plate horizontal / any orientation) | $20 / 10$ | N | max. |
| Permissible torque in $\theta_{\mathrm{X}}, \theta_{\mathrm{Y}}, \theta_{\mathrm{Z}}$ | 0.5 | $N \cdot m$ | max. |
| Drive type | Piezoelectric Inertia Drive | | |
| Miscellaneous | | | |
| Operating temperature range | 0 to 40 | ${ }^{\circ} \mathrm{C}$ | |
| Connection | 6x Sub-D 15 (m) | | |
| Material | Stainless steel, aluminum | | |
| Mass | 1.9 | kg | ± 5 \% |
| Mass without cable and connector | 1.2 | kg | $\pm 5 \%$ |
| Cable length | 2 | m | $\pm 10 \mathrm{~mm}$ |

[^1]
[^0]: Parallel Kinematics, Hexapods
 >> Q-Motion ${ }^{\circledR}$ Piezoelectric Inertia Drive
 >> Vacuum-Compatible Versions

[^1]: Technical data specified at $20 \pm 3^{\circ} \mathrm{C}$.
 Ask about custom designs!

 * The travel ranges of the individual coordinates ($X, Y, Z, \theta_{X}, \theta_{Y}, \theta_{Z}$) are interdependent.

 The data for each axis in this table shows its maximum travel range, where all other axes and the pivot point are at the reference position.
 For operation in a vacuum, we recommend a reduced duty cycle of 20% and a maximum motor push / pull force of 30% compared to a standard environment. The intrinsic mass of the slider plate must be considered accordingly.

