PIEZO NANO POSITIONING

High Stability Piezomotor Driven Mirror Mounts for LINC-NIRVANA

A.Bramigk * a; H. Martha; R.-R. Rohloff^b ^aPhysik Instrumente (PI) GmbH & Co. KG, Auf der Römerstraße 1, D-76228 Karlsruhe ^bMax-Planck-Institut für Astronomie (MPIA), Königsstuhl 17, D-69117 Heidelberg

ABSTRACT

For the LINC-NIRVANA (LN) project, MPIA requested an appropriate motorized mount for initial alignment of two dichroic beam splitters in the instrument [1]. These dich roic mirrors which reflect the visible light and transmit the NIR are located close to the pupil plane are therefore very sensitive to tilt and flexure errors which could be introduced to the wave-front sensor. Considering this the following high level specifications were requested in a very tight operating envelope: range of adjustment tip and tilt ±2° around the major axis of the elliptical mirror, resolution of adjustment <0.5 arcsec , position repeatability <1 arcsec, static position stability within an elevation 0° up to 90° <20 arc seconds and a minimum eigenfrequency >110Hz.

2.1. Sensor Integration

For closed loop operation two LVDT sensors in differential gaging mode were integrated for each axis to measure pure angular motion only. These sensors work as absolute position encoders, which means no reference or limit switches are

4. TEST RESULTS

A test setup to measure the mirror stability had to be designed specifically for the tests required in this project. An autocollimator setup was used to measure the angu-

Keyword list: Piezo, NEXLINE[®], PiezoWalk, nanopositioning, gimbal mount, mirror alignment

1. INTRODUCTION

Because of the very limited space and very high mechanical stability requirements a classical design based on DC Servo- / Stepper actuators could not be used. The loss of stiffness due to actuator and coupling components like ball tips or wire linkage compromised operating performance. For this reason, these common actuation solutions in mechanical design could not be used. A solution based on a very compact piezoelectric walk drive was found that could meet all requirements, trade named as NEXLINE[®] [2]. The layout of this kind of actuator allowed the integration of a one degree of freedom rigid coupling to the moving frame. The other degree of freedom was provided by the actuator itself. This coupling element, a type of leaf spring, is an integral part of the actuator runner. To maintain high stiffness the end of the runner was directly mounted to the moving frame while the actuator housing was fixed to the base.

needed. A closed loop resolution of 0.3 arcsec was achieved. The closed loop resolution of the positioner however is only limited by the LVDT sensor with its signal to noise ratio. In open loop mode the piezo drive is able to move the gimbal at milli-arcsec level due to its analog piezo drive capability.

2.2 Mirror interface

The dichroic mirror was mounted with three clamps on both sides of the substrate (three point support) plus two radial posts and one radial adjustable spring. The clamping force on the pads is adjustable by selecting the thickness of the washers below the clamping springs. An underlayment ring (see fig. 3) with three milled pads is used to protect the mirror.

Figure 3. LEMO sockets (1); LVDT sensor (2); clamping spring (3); underlayment ring (4)

Stroke: ± 5 mm Stepsize: 10 nm up to 8 µm Analog range: ± 2.5 μm Force generation: >40 N Dimensions: 42 x 16 x 25 mm³

lar displacement during a change in elevation from 0...90° to simulate the all sky pointing angles the instrument package would experience in operation. A mirror stability specification of less than 15 arcsec being achieved over the full operating angle range.

Figure 10. Test setup of system stability for different elevation angels

Design Features:

Compact stiff design

- Tip/Tilt axis in plane with mirror surface
- No heatdissipation in quasistatic operation
- Self-locking at power off
- Easily scalable to different optic sizes
- No light emission from encoders
- Absolute position encoder
- Suitable for vacuum applications

3. LOCATION OF THE SYSTEMS IN THE LINC-NIRVANA EXPERIMENT

An overview from top of the LN experiment is shown in fig. 5. The cryostat is placed in the upper middle below the purple round flange. Above that flange the two dichroic mirrors are mounted.

Figure 1. Gimbal mirror mount with NEXLINE[®] drive and matching drive electronics

This rigid conjunction gave outstanding performance gain in a small envelope compared to classical motor driven solutions. In this case it resulted in a high first resonant frequency of system of 125 Hz with the dichroic mirror as a load of about 1 kg.

2. MECHANICAL DESIGN

The drive units are integrated inside the frame structure and placed at a maximum radial position to optimize system stiffness. The mechanism consists of three aluminum frames: stage base (shaded orange), inner (shaded purple) and outer moving frame (shaded green). An overview in detail is shown in the image below fig.2.

Figure 5. Top view of the LN optical bench

Figure 6. Light path (black arrows) and axis orientation (white arrows) at the dichroic mirrors

Tilt around the x and y axis of the elliptical mirrors. Rotation

axis shall be located at the mirror surface plane. Adjustment

mechanism shall be self-locking when motors switched off.

The specifications must be fulfilled to an elevation up to 60°.

Due to LVDT sensor range resolution limitation

<15 arcsec of the dichroic surface normal.

125 Hz measured with Laser Vibrometer

PI NEXLINE[®] in closed loop operation

The mounting must be operational up to 90°.

Resolution X axis	Resolution Y axis
N-510K013 rotx	N-510K013 roty
Measurement Device: Zygo Laserinterferometer ZMI2000	Measurement Device: Zygo Laserinterferometer ZMI2000
$\begin{array}{c} 2 \mu \text{rad step} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	perf v = 1
time / s 5 μrad step	time /s 5 μrad step
perf up to the second s	perf o o o o o o o o o o o o o
10 μrad step	10 μrad step

Figure 2. CAD model cut along the Y axis of the stage base (orange part 1), Dichroic mirror (2); inner gimbal (3); outer gimbal (4); Flexural pivot bearing (5); drive X-axis (6); drive Y-axis (7); runner (8)

Max. weight We designed a gimbal-mount assembly to move the dichroic mirror. This was placed in the inner moving frame Adjustment with tip/ tilt direction in the x-and y-axis. The short major axis of the elliptical mirror was selected as the X-axis, while the long major axis was defined as the Y-axis. A key Range of adjustment design consideration of the positioner is that the Tip/Tilt axis is in plane with the mirror surface to eliminate beam walk due to mirror surface translations. The gimbal-mount **Resolution of** joints were designed using Flexural Pivot Bearings. Modiadjustment fied PI NEXLINE[®] drives were used to move the frames [5]. Another key design consideration is that this drive con-Position repeatability cept has an extremely low thermal signature to keep a Flexure & Stability position constant and is self-locking at power shut down. (The supporting bench There are two of these motorized mounts integrated in will be tilted up to 90° the LN instrument near the piston mirror and beam comin one direction) biner on top of the cryostat. Two mirror positioners were Minimum required due to the binocular optical configuration of the Eigenfrequency telescope. This required a left hand orientated positioner Actuator type and a mirror image right hand orientation.

Figure 9. Image of the Figure 7. Integration of Figure 8. Integration of mirror mounts in LN mirror mounts in LN environment- Front view environment- Side view

198.5 x 230 x 316.5 mm³

Aluminum

7.22 kg each unit

± 2° closed loop

(± 2.2° hard-stop)

Measured with autocollimator

0.288 arcsec (closed-loop)

<0.1 arcsec open-loop

0.3 arcsec

SUMMERY SPECIFICATION

Technical Data

Dimensions

Material

N-510K013 integrated on the bench.

REFERENCES

[1] http://www.mpia.de/LINC [2] http://www.pi.ws [3] Brix, M., Pott, J.-U., Bertram, T., Rost, S., Borelli, J. L., Herbst, T. M., Kuerster, M., Rohloff, R.-R., "LINC-NIRVANA piston control elements" SPIE 7734-55 (2010)

[4] Herbst, T. M., Ragazzoni, R., Eckart, A., Weigelt, G., "Imaging beyond the fringe: an update on the LINC-NIRVANA Fizeau interferometer for the LBT" SPIE 7734-6 (2010)

[5] Müller, K.-D., Marth, Dr. H., Pertsch, P., Glöss, Dr. R., Zhao, Dr. X., "Piezo-Based, Long-Travel Actuators For Special Environment Conditions" ACTUATOR 2006

*a.bramigk@pi.ws; phone +49 721 4846-2108; fax +49 721 4846-2099; pi.de

© Physik Instrumente (PI) GmbH & Co. KG · Auf der Römerstr. 1 · 76228 Karlsruhe, Germany Tel. +49 721 4846-0 · Fax +49 721 4846-1019 · info@pi.ws · www.pi.ws

PIEZO NANO POSITIONING