Piezo Ceramic Actuators
and Custom Subassemblies
PI Ceramic is the piezo ceramic division of Physik Instrumente (PI), the world-leading manufacturer of ultra-high-precision piezo nanopositioning systems. Based on knowledge and expertise gained in more than 40 years of continuous research and manufacturing of piezoelectric material and components, PI Ceramic is a world-class supplier of high-performance piezoelectric actuator and transducer components and subassemblies.

PI Ceramic is also the only company to provide the ultrareliable PICMA™ monolithic piezo actuator ceramics. No other supplier of piezo ceramic actuators is better placed to design and produce innovative actuator solutions for today’s and tomorrow’s high-tech applications.
The PI Ceramic state-of-the-art facility in Lederhose, Germany hosts an extensive manufacturing operation, R&D laboratories and administration center.

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI Ceramic Strengths</td>
<td>4</td>
</tr>
<tr>
<td>Key Markets and Applications</td>
<td>5</td>
</tr>
<tr>
<td>PI Ceramic History / Our Mission</td>
<td>6</td>
</tr>
<tr>
<td>Overview Piezoelectric Actuators</td>
<td>8—12</td>
</tr>
<tr>
<td>PICMA™ Chip Piezo Actuators</td>
<td>13</td>
</tr>
<tr>
<td>PICMA™ High-Performance Piezo Actuators</td>
<td>14</td>
</tr>
<tr>
<td>PICA-Stack Piezo Actuators</td>
<td>16</td>
</tr>
<tr>
<td>PICA-Power Piezo Actuators</td>
<td>18</td>
</tr>
<tr>
<td>PICA-Thru Piezo Stack Actuators with Aperture</td>
<td>20</td>
</tr>
<tr>
<td>PICA-Shear Piezo Shear Actuators</td>
<td>22</td>
</tr>
<tr>
<td>PICMA™ Multilayer Bender Actuators</td>
<td>24</td>
</tr>
<tr>
<td>Piezoceramic Tubes</td>
<td>26</td>
</tr>
<tr>
<td>Piezo Amplifiers, Drivers, Controllers</td>
<td>28—36</td>
</tr>
<tr>
<td>Micro- & Nanopositioning Products Overview</td>
<td>37</td>
</tr>
<tr>
<td>Piezo Actuator Tutorial</td>
<td>38—51</td>
</tr>
<tr>
<td>Advantages of Piezoelectric Actuators</td>
<td>39</td>
</tr>
<tr>
<td>Piezoelectric Actuator Materials</td>
<td>40</td>
</tr>
<tr>
<td>Displacement Modes of Piezoelectric Actuators</td>
<td>42</td>
</tr>
<tr>
<td>Mechanical Considerations</td>
<td>43</td>
</tr>
<tr>
<td>Dynamic Behavior</td>
<td>46</td>
</tr>
<tr>
<td>Open- and Closed-Loop Operation</td>
<td>48</td>
</tr>
<tr>
<td>Lifetime of Piezoelectric Actuators</td>
<td>49</td>
</tr>
<tr>
<td>Handling Precautions</td>
<td>50</td>
</tr>
</tbody>
</table>
PI Ceramic is a solutions-based company. Our engineers are continually developing new ideas and concepts, geared to bringing emerging technologies and products to market.

In addition to a large range of standard piezoelectric actuator components, we specialize in the rapid design and delivery of custom parts and subassemblies manufactured to our customers’ specifications. Our design and manufacturing processes are optimized for medium production quantities of high-performance, key component parts, such as those used in capital equipment and research. Our flexibility allows us to produce custom parts at a very attractive price, even in small quantities.

PI Ceramic’s 6840 square meter (73600 square foot) facility features the latest equipment for ceramic design, engineering and manufacturing. To support our own equipment and experienced staff, and to maintain our leading position in the industry, we maintain a number of alliances with universities and research facilities. PI Ceramic has been an ISO 9001 certified manufacturer since 1997.
Key Markets and Applications

PI Ceramic delivers piezoelectric solutions for all important high-tech markets:

- Semiconductors
- Aerospace Engineering
- Defense Industry
- Industrial Automation
- Vibration Cancellation
- Remote Sensing
- Precision Machining
- Telecommunications
- Life Sciences
- Medical Instrumentation

Clean room production guarantees the highest reliability.

Mounting custom actuator subassemblies for a semiconductor application.
Our Mission

Our mission is to satisfy customers by providing the highest benefit for their applications with standard or custom-engineered solutions. This is achieved by close contact between our design and application engineers and your designers—from the early prototype phase to the finished product and beyond.

Customer Relationships

PI Ceramic employees cultivate close working relationships with our clients. We are committed to professionalism, total customer satisfaction, and quality service delivery.

PI Ceramic’s priority is helping our customers succeed by sustaining their competitive edge in existing and new technologies. Their success is PI Ceramic’s success.

“Long-term business relationships, reliability, open and friendly communication with customers and suppliers are of the essence for PI Ceramic and all members of the worldwide PI group and far more important than short-term gain.”

Dr. Karl Spanner, President
Equipment for fully automated screen printing of electrodes on piezoelectric and dielectric ceramics.

PI Ceramic History

- **1880**: Discovery of piezoelectric activity by J. and P. Curie
- **1890**: First porcelain manufacturing company in Hermsdorf, Germany (10 miles from the PI Ceramic factory)
- **1918**: HESCHO Trust, 1000 employees, world-leader in electro-ceramics at the time
- **1931**: First ceramic capacitor
- **1943**: Ceramic processing know-how transferred to Japan
- **1945**: KWH (Keramische Werke Hermsdorf) founded
- **1952**: First PZT materials (PIEZOLAN™) manufactured at KWH
- **1989**: KWH is split into different companies
- **1992**: PI and employees of KWH found PI Ceramic (2000 square meters, 21500 sq.ft.)
- **2000**: PI Ceramic employs 70 people
- **2002**: PI Ceramic expands factory to 6840 square meters (73600 square feet)
- **2003**: PICMA™ actuator technology introduced
Piezoelectric Components

Applications
- Actuators
- Sensors
- Ultrasonic Transducers
- Sonar Technology
- Ultrasonic Cleaning and Welding

<table>
<thead>
<tr>
<th>Component</th>
<th>Nominal Dimensions (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discs</td>
<td>OD: 1 - 80, Thickness: min 0.2</td>
</tr>
<tr>
<td>Rings</td>
<td>OD/ID: 3 - 50, Thickness: 0.2 - 15</td>
</tr>
<tr>
<td>Tubes</td>
<td>OD/ID: 1 - 80, L: max. 50</td>
</tr>
<tr>
<td>Plates</td>
<td>LW: 1 - 70, TH: min 0.2</td>
</tr>
<tr>
<td>Shear Plates</td>
<td>LW: 2 - 20, Thickness: max. 15</td>
</tr>
</tbody>
</table>
Applications

- NanoPositioning
- High-Load Positioning
- Active Vibration Cancellation
- Smart Structures
- Precision Mechanics
- Chip Manufacturing and Testing
- Laser Tuning

see PICA-Stack, PICA-Power and PICA-Thru datasheets, pages 16, 18, 20

Technical Data

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>up to 300 µm</td>
</tr>
<tr>
<td>Blocking force</td>
<td>up to 80 kN</td>
</tr>
<tr>
<td>Static load</td>
<td>up to 100 kN</td>
</tr>
<tr>
<td>Operating voltage range</td>
<td>0 to 1000 V</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>-20 to +85 °C (cryogenic and up to +150 °C on request)</td>
</tr>
<tr>
<td>Dynamic reliability</td>
<td>more than 10^9 cycles</td>
</tr>
<tr>
<td>Cross section shapes</td>
<td>cylindrical, tubular, rectangular</td>
</tr>
<tr>
<td>Length</td>
<td>up to 300 mm</td>
</tr>
</tbody>
</table>

PZT Actuator for Structural Deformation / Vibration Damping in Aerospace Applications.

Variety of piezo ceramic stacks.
PICMA™ Monolithic Multilayer Actuators

Special Features
- Low Operating Voltage
- No Polymer Coating
- Ceramic Insulation
- 100% Ultra-High Vacuum Compatible
- Sub-nm Resolution
- Sub-ms Response Time

Applications
- NanoPositioning
- Precision Mechanics
- Semiconductor Equipment
- Valves
- Laser Applications
- Telecommunication

see PICMA™ datasheets pages 13, 14, 15

PICMA™ Monolithic Actuators are the only ceramic insulated piezo actuators available. They provide higher reliability than other monolithic actuators and exhibit no measurable outgassing.

Technical Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross section</td>
<td>2x2 to 10x10 mm²</td>
</tr>
<tr>
<td>Displacement</td>
<td>up to 30 µm / segment</td>
</tr>
<tr>
<td>Blocking force</td>
<td>up to 5 kN</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>max. 120 V</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-40 to +150 °C</td>
</tr>
</tbody>
</table>
Special Features

- Low Operating Voltage
- Special Polymer Insulation
- 100% UHV Compatible
- Sub-nm Resolution
- Sub-ms Response Time

Applications

- NanoPositioning
- Piezo-Motors
- Semiconductor Equipment
- Laser Applications

see PICA Shear Actuators datasheet, page 22

Technical Data

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross section</td>
<td>3x3 to 16x16 mm²</td>
</tr>
<tr>
<td>Displacement</td>
<td>up to 10 µm</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>max. +/- 375 V</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-40 to +150 °C (cryogenic on request)</td>
</tr>
</tbody>
</table>
Applications
- Micropositioning
- Pneumatic Valve Control
- Telecommunication
- Optical Switches
- Ink Jet Printers

Special Features
- Low Operating Voltage
- No Polymer Coating
- Full Ceramic Actuator
- 100% UHV Compatible
- μm Resolution
- ms Response Time

see PICMA™ Bender datasheet, page 24

Technical Data
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>up to 2 mm</td>
</tr>
<tr>
<td>Blocking force</td>
<td>up to 2.5 N</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>max. 60 V / 300 V</td>
</tr>
</tbody>
</table>

PI Ceramic Multilayer Benders are excellent actuators for pneumatic valves.
PICMA™ Chip Monolithic Multilayer Piezo Actuators

Technical Data / Ordering Numbers

<table>
<thead>
<tr>
<th>Ordering Number*</th>
<th>Dimensions A x B x TH in mm</th>
<th>Displacement [µm ±20% @ 100V]</th>
<th>Blocking Force [N]</th>
<th>Electrical Capacitance [nF ±20%]</th>
<th>Resonant Frequency [kHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL022.30</td>
<td>2 x 2 x 2</td>
<td>2.2</td>
<td>> 250</td>
<td>25</td>
<td>> 300</td>
</tr>
<tr>
<td>PL033.20**</td>
<td>3 x 3 x 2</td>
<td>2.2</td>
<td>> 300</td>
<td>50</td>
<td>> 300</td>
</tr>
<tr>
<td>PL033.30</td>
<td>3 x 3 x 2</td>
<td>2.2</td>
<td>> 300</td>
<td>50</td>
<td>> 300</td>
</tr>
<tr>
<td>PL055.20**</td>
<td>5 x 5 x 2</td>
<td>2.2</td>
<td>> 500</td>
<td>450</td>
<td>> 300</td>
</tr>
<tr>
<td>PL055.30</td>
<td>5 x 5 x 2</td>
<td>2.2</td>
<td>> 500</td>
<td>250</td>
<td>> 300</td>
</tr>
</tbody>
</table>

* For optional wire leads change order number extension to .x1 (e.g. PL022.31)

Resonant frequency measured at 1 V rms, capacitance measured at 1 V rms, 1 kHz.
Max. operating voltage: -20 to +100 V
Max. operating temperature: 150°C (**85°C only)
Standard Mechanical Interface: ceramic (top & bottom)
Standard Electrical Interface: solderable termination
Available Options: special mechanical interfaces, etc.
Other specifications on request.
Specifications subject to change without notice.

Ultra-Compact Monolithic Piezo Actuators

PICMA™ Chip actuators are the smallest ceramic-insulated multilayer piezo actuators available. Providing sub-nanometer resolution and sub-millisecond response, they are ideally suited to high-level dynamic applications. PICMA™ actuators consist of a highly reliable ceramic-insulated PZT block (made of ~ 50 µm layers) with solderable terminations, and come in standard sizes as small as 2x2x2 mm³.

Optimized PZT Ceramics, Humidity Resistance

PICMA™ actuators are made from a ceramic material in which the piezoceramic properties such as stiffness, capacitance, displacement, temperature stability, leakage current and lifetime are optimally combined. The monolithic, ceramic-insulated design makes polymer-film insulation unnecessary. Diffusion of water molecules into the insulation layer, the major cause of dielectric breakdown, is greatly reduced by the use of cofired outer ceramic insulation.

Long Lifetime and High Performance—Ideal for Dynamic Operation

PICMA™ Chip actuators are superior to conventional actuators in high-endurance situations, where they show substantially longer lifetimes both in static and dynamic operation, even in harsh environments. Due to their high resonant frequency, these actuators are ideally suited for dynamic operation with light loads; an external preload is recommended for dynamic operation with larger loads. The high Curie temperature of 320 °C provides a usable temperature range extending up to 150 °C, well above the 80 °C limit of conventional multilayer actuators. At the low end, operation down to a few kelvin is possible. (with some reduction in performance specifications).

Optimum UHV Compatibility—Minimal Outgassing

The lack of polymer insulation and the high Curie temperature make for optimal ultra-high-vacuum compatibility (no measurable outgassing / high bakeout temperatures of up to 150 °C).

Amplifiers, Drivers & Controllers

PI offers a wide range of control electronics for piezo actuators (see page 28 and www.pi.ws) from low-power drivers to multi-channel, closed-loop, digital controllers. Of course, PI also designs custom amplifiers and controllers.

Application Examples

- Static and Dynamic NanoPositioning
- Laser Tuning
- Micro-dispensing
- Interferometry
- Life Sciences
- Photonics
Low Operating Voltage
Superior Lifetime Even Under Extreme Conditions
Very Large Operating-Temperature Range
High Humidity Resistance
Excellent Temperature Stability
High Stiffness
UHV Compatible to 10⁻⁹ hPa
Sub-Millisecond Response & Sub-Nanometer Resolution

Increased Lifetime and Higher Performance
PICMA™ (PI Ceramic Monolithic Actuator) piezo actuators are characterized by their high performance and reliability, even in extremely harsh environments. They are superior to conventional multilayer actuators in industrial applications and high-endurance situations, where they show substantially longer lifetimes both in static and dynamic operation.

New Production Process, Optimized PZT Ceramics
PICMA™ piezo actuators are made from a ceramic material in which the piezoceramic properties such as stiffness, capacitance, displacement, temperature stability, leakage current and lifetime are optimally combined. The actuators’ monolithic design and special electrode structure was made possible by advances in production technology. This development is just one reflection of the more than 30 years experience of PI Ceramic with thousands of industrial PZT applications.

Increased Lifetime through Humidity Resistance
The monolithic, ceramic-insulated design makes polymer-film insulation unnecessary. Diffusion of water molecules into the insulation layer, the major cause of dielectric breakdown, is greatly reduced by the use of cofired, outer ceramic insulation.

High-Level Dynamic Performance—Very Wide Temperature Range
The high Curie temperature of 320 °C gives PICMA™ actuators a usable temperature range extending up to 150 °C. This means that they can be operated in hotter environments, or they can be driven harder in dynamic operation (with conventional multilayer actuators, heat generation — which is proportional to operating frequency — either limits the operating frequency or duty cycle in dynamic operation, or makes ungainly cooling provisions necessary).

Optimum UHV Compatibility—Minimal Outgassing
The lack of polymer insulation and the high Curie temperature make for optimal ultra-high-vacuum compatibility (no measurable outgassing / high bakeout temperatures, up to 150 °C)

Ideal for Closed-Loop Operation
The ceramic surface of the actuators is extremely well suited for use with resistive or optical fiber strain gauge sensors. Such sensors can be easily applied to the actuator surface and exhibit significantly higher stability and linearity than with conventional polymer-insulated actuators.

Amplifiers, Drivers & Controllers
PI offers a wide range of control electronics for piezo actuators (see page 28 and www.pi.ws) from low-power drivers to multichannel, closed-loop, digital controllers. Of course, PI also designs custom amplifiers and controllers.

Application Examples
- Precision Mechanics and Mechanical Engineering
- NanoPositioning / High-Speed Switching
- Active and Adaptive Optics
- Vibration cancellation
- Pneumatic & Hydraulic Valves
- Metrology / Interferometry
- Life Sciences, Medicine and Biology

PICMA™ piezo actuators are currently available with cross-sections of 2x3, 3x3, 5x5 and 10x10 mm².

PICMA™ actuator with optional rounded top piece for decoupling lateral forces and optional wire leads.
The displacement of PICMA™ actuators exhibits very low temperature dependence. This, in combination with their low heat generation, makes PICMA™ actuators optimal for dynamic operation. (Operating frequency \(f = 200 \) Hz)

PICMA™ piezo actuators (bottom curve) compared with conventional multilayer actuators with polymer insulation (top curve). PICMA™ Actuators are not affected by the high-humidity test conditions. Conventional piezo actuators exhibit increased leakage current after only a few hours. Leakage current is an indication of insulation quality and expected lifetime. Test conditions: \(U = 100 \) VDC; \(T = 25 \) °C; Relative Humidity = 70%

The displacement of PICMA™ actuators exhibits very low temperature dependence. This, in combination with their low heat generation, makes PICMA™ actuators optimal for dynamic operation. (Operating frequency \(f = 200 \) Hz)

PICMA™ piezo actuators (bottom curve) compared with conventional multilayer actuators with polymer insulation (top curve). PICMA™ Actuators are not affected by the high-humidity test conditions. Conventional piezo actuators exhibit increased leakage current after only a few hours. Leakage current is an indication of insulation quality and expected lifetime. Test conditions: \(U = 100 \) VDC; \(T = 25 \) °C; Relative Humidity = 70%

Technical Data / Ordering Numbers

<table>
<thead>
<tr>
<th>Ordering Number*</th>
<th>Dimensions A x B x L [mm]</th>
<th>Nominal Displacement [µm @ 100 V]</th>
<th>Max. Displacement [µm @ 120 V]</th>
<th>Blocking Force [N @ 120 V]</th>
<th>Stiffness [N/µm]</th>
<th>Electrical Capacitance [µF] (±20%)</th>
<th>Resonant Frequency [kHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-882.10</td>
<td>2 x 3 x 9</td>
<td>6.5 ± 20%</td>
<td>8 ± 20%</td>
<td>190</td>
<td>24</td>
<td>0.13</td>
<td>135</td>
</tr>
<tr>
<td>P-882.20</td>
<td>2 x 3 x 11</td>
<td>8.5 ± 20%</td>
<td>10.5 ± 20%</td>
<td>210</td>
<td>20</td>
<td>0.18</td>
<td>110</td>
</tr>
<tr>
<td>P-882.30</td>
<td>2 x 3 x 13.5</td>
<td>11 ± 20%</td>
<td>13 ± 20%</td>
<td>210</td>
<td>16</td>
<td>0.22</td>
<td>90</td>
</tr>
<tr>
<td>P-882.50</td>
<td>2 x 3 x 18</td>
<td>15 ± 10%</td>
<td>18 ± 10%</td>
<td>210</td>
<td>12</td>
<td>0.31</td>
<td>70</td>
</tr>
<tr>
<td>P-883.10</td>
<td>3 x 3 x 9</td>
<td>6.5 ± 20%</td>
<td>8 ± 20%</td>
<td>290</td>
<td>36</td>
<td>0.21</td>
<td>135</td>
</tr>
<tr>
<td>P-883.20</td>
<td>3 x 3 x 11</td>
<td>8.5 ± 20%</td>
<td>10.5 ± 20%</td>
<td>310</td>
<td>29</td>
<td>0.27</td>
<td>110</td>
</tr>
<tr>
<td>P-883.30</td>
<td>3 x 3 x 13.5</td>
<td>11 ± 20%</td>
<td>13 ± 20%</td>
<td>310</td>
<td>24</td>
<td>0.35</td>
<td>90</td>
</tr>
<tr>
<td>P-883.50</td>
<td>3 x 3 x 18</td>
<td>15 ± 10%</td>
<td>18 ± 10%</td>
<td>310</td>
<td>18</td>
<td>0.48</td>
<td>70</td>
</tr>
<tr>
<td>P-885.10</td>
<td>5 x 5 x 9</td>
<td>6.5 ± 20%</td>
<td>8 ± 20%</td>
<td>800</td>
<td>100</td>
<td>0.6</td>
<td>135</td>
</tr>
<tr>
<td>P-885.20</td>
<td>5 x 5 x 11</td>
<td>8.5 ± 20%</td>
<td>10.5 ± 20%</td>
<td>850</td>
<td>82</td>
<td>0.8</td>
<td>110</td>
</tr>
<tr>
<td>P-885.30</td>
<td>5 x 5 x 13.5</td>
<td>11 ± 20%</td>
<td>13 ± 20%</td>
<td>870</td>
<td>67</td>
<td>1.1</td>
<td>90</td>
</tr>
<tr>
<td>P-885.50</td>
<td>5 x 5 x 18</td>
<td>15 ± 10%</td>
<td>18 ± 10%</td>
<td>900</td>
<td>50</td>
<td>1.5</td>
<td>70</td>
</tr>
<tr>
<td>P-885.90</td>
<td>5 x 5 x 36</td>
<td>32 ± 10%</td>
<td>38 ± 10%</td>
<td>950</td>
<td>25</td>
<td>3.1</td>
<td>40</td>
</tr>
<tr>
<td>P-887.30</td>
<td>7 x 7 x 13.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-887.50</td>
<td>7 x 7 x 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-887.90</td>
<td>7 x 7 x 36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-888.30</td>
<td>10 x 10 x 13.5</td>
<td>11 ± 20%</td>
<td>13 ± 20%</td>
<td>3500</td>
<td>267</td>
<td>4.3</td>
<td>90</td>
</tr>
<tr>
<td>P-888.50</td>
<td>10 x 10 x 18</td>
<td>15 ± 10%</td>
<td>18 ± 10%</td>
<td>3600</td>
<td>200</td>
<td>6.0</td>
<td>70</td>
</tr>
<tr>
<td>P-888.90</td>
<td>10 x 10 x 36</td>
<td>32 ± 10%</td>
<td>38 ± 10%</td>
<td>3800</td>
<td>100</td>
<td>13.0</td>
<td>40</td>
</tr>
</tbody>
</table>

* For optional PTFE insulated wires, pigtail length 100 mm, change order number extension to .x1 (e.g. P-882.11).

Unloaded (longitudinal) resonant frequency measured at 1 Vpp, capacitance at 1 Vpp, 1 kHz.

Standard PZT ceramic type: PIC 252 (see page 40)

Max. operating voltage: -20 to +120 V
Max. operating temperature: -40 to +150 °C
Recommended preload 15 to 30 MPa

Standard Mechanical Interface: ceramic (top & bottom)
Standard Electrical Interface: solderable termination

Available Options: Strain Gauge Sensors, special mechanical interfaces, etc.
Other specifications on request.
Specifications subject to change without notice.
Ultra-High Reliability, High Displacement, Low Power Requirements

PICA-Stack actuators are specifically designed for high-duty-cycle applications. With our extensive applications knowledge, gained over several decades, we know how to build performance that does not come at the price of reliability. All materials used are specifically matched for robustness and lifetime. Endurance tests on PICA actuators prove consistent performance, even after billions (1,000,000,000) of cycles. The combination of high displacement and low electrical capacitance provides for excellent dynamic behavior with reduced driving power requirements.

Flexibility: PI Ceramic’s Strength

All manufacturing processes at PI Ceramic are setup for maximum flexibility. Should our standard actuators not fit your application, let us provide you with a custom design. Our engineers will work with you to find the optimum solution for your application at a very attractive price, even for small quantities. Some of our custom capabilities are listed below:

- Custom Materials
- Custom Voltage Ranges
- Custom Geometries (Circular, Rectangular, Triangular, Layer Thickness ...)
- Custom Displacement
- Custom Load / Force Ranges
- Custom Flat or Spherical Endplates (Alumina, Glass, Sapphire, ...)
- Extra-Tight Length Tolerances

Short Leadtime, Standard & Custom Designs

Because all piezoelectric materials used in PICA actuators are manufactured at PI Ceramic, leadtimes are short and quality is outstanding. All standard and custom PICA-Stack actuators are delivered with performance test sheets.

Amplifiers, Drivers & Controllers

PI offers a wide range of control electronics for piezo actuators (see page 28 and www.pi.ws) from low-power drivers to multi-channel, closed-loop, digital controllers. Of course, PI also designs custom amplifiers and controllers.

Application Examples

- NanoPositioning
- High-load positioning
- Precision mechanics
- Semiconductor manufacturing and testing
- Laser tuning
- Switching
- Smart structures (adaptronics)

Notes

PI-Stack actuators are delivered with metal endcaps for improved robustness and reliability. Adherence to the mounting and handling guidelines on page 50 will help you obtain maximum performance and lifetime from your piezo actuators. Please contact a PI Ceramic applications engineer for additional technical support.
Technical Data / Ordering Numbers

<table>
<thead>
<tr>
<th>Ordering Number</th>
<th>Displacement (µm)</th>
<th>Diameter D (mm)</th>
<th>Length L (mm)</th>
<th>Blocking force (N)</th>
<th>Stiffness (N/µm)</th>
<th>Capacitance (±20%)</th>
<th>Resonant frequency (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-007.00</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>650</td>
<td>130</td>
<td>11</td>
<td>1126</td>
</tr>
<tr>
<td>P-007.10</td>
<td>15</td>
<td>7</td>
<td>17</td>
<td>850</td>
<td>59</td>
<td>33</td>
<td>59</td>
</tr>
<tr>
<td>P-007.20</td>
<td>30</td>
<td>7</td>
<td>29</td>
<td>1000</td>
<td>35</td>
<td>64</td>
<td>36</td>
</tr>
<tr>
<td>P-007.40</td>
<td>60</td>
<td>7</td>
<td>54</td>
<td>1150</td>
<td>19</td>
<td>130</td>
<td>20</td>
</tr>
<tr>
<td>P-010.00</td>
<td>5</td>
<td>10</td>
<td>18</td>
<td>1400</td>
<td>270</td>
<td>21</td>
<td>126</td>
</tr>
<tr>
<td>P-010.10</td>
<td>15</td>
<td>10</td>
<td>17</td>
<td>1800</td>
<td>120</td>
<td>64</td>
<td>59</td>
</tr>
<tr>
<td>P-010.20</td>
<td>30</td>
<td>10</td>
<td>30</td>
<td>2100</td>
<td>71</td>
<td>130</td>
<td>35</td>
</tr>
<tr>
<td>P-010.40</td>
<td>60</td>
<td>10</td>
<td>56</td>
<td>2200</td>
<td>260</td>
<td>260</td>
<td>20</td>
</tr>
<tr>
<td>P-010.80</td>
<td>120</td>
<td>10</td>
<td>107</td>
<td>2400</td>
<td>21</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>P-016.10</td>
<td>15</td>
<td>16</td>
<td>29</td>
<td>5000</td>
<td>190</td>
<td>340</td>
<td>36</td>
</tr>
<tr>
<td>P-016.20</td>
<td>30</td>
<td>16</td>
<td>54</td>
<td>6000</td>
<td>100</td>
<td>680</td>
<td>20</td>
</tr>
<tr>
<td>P-016.40</td>
<td>60</td>
<td>16</td>
<td>101</td>
<td>6500</td>
<td>54</td>
<td>1300</td>
<td>11</td>
</tr>
<tr>
<td>P-016.80</td>
<td>120</td>
<td>16</td>
<td>150</td>
<td>6500</td>
<td>36</td>
<td>2000</td>
<td>7</td>
</tr>
<tr>
<td>P-025.10</td>
<td>15</td>
<td>25</td>
<td>18</td>
<td>11000</td>
<td>740</td>
<td>400</td>
<td>56</td>
</tr>
<tr>
<td>P-025.20</td>
<td>30</td>
<td>25</td>
<td>30</td>
<td>13000</td>
<td>440</td>
<td>820</td>
<td>35</td>
</tr>
<tr>
<td>P-025.40</td>
<td>60</td>
<td>25</td>
<td>53</td>
<td>15000</td>
<td>250</td>
<td>1700</td>
<td>21</td>
</tr>
<tr>
<td>P-025.80</td>
<td>120</td>
<td>25</td>
<td>101</td>
<td>16000</td>
<td>130</td>
<td>3400</td>
<td>11</td>
</tr>
<tr>
<td>P-025.90</td>
<td>180</td>
<td>25</td>
<td>149</td>
<td>16000</td>
<td>89</td>
<td>5100</td>
<td>7</td>
</tr>
<tr>
<td>P-025.150</td>
<td>250</td>
<td>25</td>
<td>204</td>
<td>16000</td>
<td>65</td>
<td>7100</td>
<td>5</td>
</tr>
<tr>
<td>P-025.200</td>
<td>300</td>
<td>25</td>
<td>244</td>
<td>16000</td>
<td>54</td>
<td>8500</td>
<td>5</td>
</tr>
<tr>
<td>P-035.10</td>
<td>15</td>
<td>35</td>
<td>20</td>
<td>20000</td>
<td>1300</td>
<td>700</td>
<td>51</td>
</tr>
<tr>
<td>P-035.20</td>
<td>30</td>
<td>35</td>
<td>32</td>
<td>24000</td>
<td>810</td>
<td>1600</td>
<td>33</td>
</tr>
<tr>
<td>P-035.40</td>
<td>60</td>
<td>35</td>
<td>57</td>
<td>28000</td>
<td>460</td>
<td>3300</td>
<td>19</td>
</tr>
<tr>
<td>P-035.80</td>
<td>120</td>
<td>35</td>
<td>104</td>
<td>30000</td>
<td>250</td>
<td>6700</td>
<td>11</td>
</tr>
<tr>
<td>P-035.90</td>
<td>180</td>
<td>35</td>
<td>153</td>
<td>31000</td>
<td>170</td>
<td>10000</td>
<td>7</td>
</tr>
<tr>
<td>P-045.20</td>
<td>30</td>
<td>45</td>
<td>33</td>
<td>39000</td>
<td>1300</td>
<td>2800</td>
<td>32</td>
</tr>
<tr>
<td>P-045.40</td>
<td>60</td>
<td>45</td>
<td>58</td>
<td>44000</td>
<td>740</td>
<td>5700</td>
<td>19</td>
</tr>
<tr>
<td>P-045.80</td>
<td>120</td>
<td>45</td>
<td>105</td>
<td>49000</td>
<td>410</td>
<td>11000</td>
<td>10</td>
</tr>
<tr>
<td>P-045.90</td>
<td>180</td>
<td>45</td>
<td>154</td>
<td>50000</td>
<td>280</td>
<td>17000</td>
<td>7</td>
</tr>
<tr>
<td>P-050.20</td>
<td>30</td>
<td>50</td>
<td>33</td>
<td>48000</td>
<td>1600</td>
<td>3400</td>
<td>32</td>
</tr>
<tr>
<td>P-050.40</td>
<td>60</td>
<td>50</td>
<td>58</td>
<td>55000</td>
<td>910</td>
<td>7000</td>
<td>19</td>
</tr>
<tr>
<td>P-050.80</td>
<td>120</td>
<td>50</td>
<td>105</td>
<td>60000</td>
<td>500</td>
<td>14000</td>
<td>10</td>
</tr>
<tr>
<td>P-050.90</td>
<td>180</td>
<td>50</td>
<td>154</td>
<td>61000</td>
<td>345</td>
<td>22000</td>
<td>7</td>
</tr>
<tr>
<td>P-056.20</td>
<td>30</td>
<td>56</td>
<td>33</td>
<td>60000</td>
<td>2000</td>
<td>4300</td>
<td>32</td>
</tr>
<tr>
<td>P-056.40</td>
<td>60</td>
<td>56</td>
<td>58</td>
<td>66000</td>
<td>1100</td>
<td>8900</td>
<td>19</td>
</tr>
<tr>
<td>P-056.80</td>
<td>120</td>
<td>56</td>
<td>105</td>
<td>76000</td>
<td>630</td>
<td>18000</td>
<td>10</td>
</tr>
<tr>
<td>P-056.90</td>
<td>180</td>
<td>56</td>
<td>154</td>
<td>78000</td>
<td>430</td>
<td>27000</td>
<td>7</td>
</tr>
</tbody>
</table>

Unloaded (longitudinal) resonant frequency measured at 1 Vpp, capacitance at 1 Vpp, 1 kHz. Blocking force at 1000 V.

Standard PZT ceramic type: PIC 151 (see page 40)

Operating voltage range: 0 to 1000 V

Operating temperature range: -20 to +85 °C

Standard mechanical interface (top & bottom): steel plates, 0.5 - 2 mm thick (depends on model)

Standard electrical interface: two PTFE insulated wires, pigtail length 100 mm

Available options: integrated piezo force sensor or strain gauge sensors, non magnetic, vacuum compatible, etc.

Other specifications on request.

Specifications subject to change without notice.
PICA-Power High-Level Dynamics Piezo Actuators

Extra-High Reliability for High-Level Dynamics, High-Temperature Applications
PICA-Power actuators are optimized for high-temperature working conditions and high-duty-cycle dynamic applications. With our extensive applications knowledge, gained over several decades, we know how to build performance that does not come at the price of reliability. All materials used are specifically matched for robustness and lifetime. Endurance tests on PICA-Power actuators prove consistent performance, even after billions (1,000,000,000) of cycles.

Flexibility: PI Ceramic’s Strength
All manufacturing processes at PI Ceramic are set up for maximum flexibility. Should our standard actuators not fit your application, let us provide you with a custom design. Our engineers will work with you to find the optimum solution for your application at a very attractive price, even for small quantities. Some of our custom capabilities are listed below:

- Custom Materials
- Custom Voltage Ranges
- Custom Geometries (Circular, Rectangular, Triangular, Layer Thickness ...)
- Custom Displacement
- Custom Load / Force Ranges
- Custom Flat or Spherical Endplates (alumina, glass, sapphire, ...)
- Extra-Tight Length Tolerances
- Custom-Molded Versions
- Integrated Piezoelectric Sensors
- Custom UHV Versions (10⁻⁹ hPa)
- Clear Aperture Available

Short Leadtime for Standard & Custom Designs
Because all piezoelectric materials used in PICA-Power actuators are manufactured at PI Ceramic, leadtimes are short and quality is outstanding. All standard and custom PICA-Power actuators are delivered with performance test sheets.

Amplifiers, Drivers & Controllers
PI offers a wide range of piezo control electronics (see page 28 and www.pi.ws), from low-power drivers to the ultra-high-performance E-480 power amplifier delivering 2000 W of dynamic power (see PI catalog).

For closed-loop positioning applications, a variety of analog and digital controllers is also available. The modular E-500 system (see PI catalog) can be upgraded from an amplifier to a servo-controller and offers a variety of computer interfaces.

Of course, PI also designs custom amplifiers and controllers.

Application Examples
- NanoPositioning
- Active vibration damping and cancellation
- High-load positioning
- Precision machining
- Semiconductor manufacturing and testing
- Laser tuning
- Switching
- Smart structures (adaptronics)

PICA-Power-series piezoceramic stack actuators are offered in a large variety of standard shapes and sizes, with additional custom designs to suit any application. Based on the PIC 255 material, these actuators are especially well-suited for industrial, high-level dynamic applications.
Custom preloaded PICA-Power piezo actuator with forced-air cooling.

Technical Data / Ordering Numbers

<table>
<thead>
<tr>
<th>Ordering Number</th>
<th>Displacement [µm] [-10%/+20%]</th>
<th>Diameter D [mm]</th>
<th>Length L [mm ±0.5]</th>
<th>Blocking force [N]</th>
<th>Stiffness [N/µm]</th>
<th>Capacitance [pF ±20%]</th>
<th>Resonant Frequency [kHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-010.00P</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>1200</td>
<td>240</td>
<td>17</td>
<td>129</td>
</tr>
<tr>
<td>P-010.10P</td>
<td>15</td>
<td>10</td>
<td>18</td>
<td>1800</td>
<td>120</td>
<td>46</td>
<td>64</td>
</tr>
<tr>
<td>P-010.20P</td>
<td>30</td>
<td>10</td>
<td>31</td>
<td>2160</td>
<td>68</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>P-010.40P</td>
<td>60</td>
<td>10</td>
<td>58</td>
<td>2200</td>
<td>37</td>
<td>180</td>
<td>20</td>
</tr>
<tr>
<td>P-010.80P</td>
<td>120</td>
<td>10</td>
<td>111</td>
<td>2300</td>
<td>19</td>
<td>370</td>
<td>10</td>
</tr>
<tr>
<td>P-016.10P</td>
<td>15</td>
<td>16</td>
<td>18</td>
<td>4500</td>
<td>300</td>
<td>130</td>
<td>64</td>
</tr>
<tr>
<td>P-016.20P</td>
<td>30</td>
<td>16</td>
<td>31</td>
<td>5400</td>
<td>180</td>
<td>250</td>
<td>37</td>
</tr>
<tr>
<td>P-016.40P</td>
<td>60</td>
<td>16</td>
<td>58</td>
<td>5600</td>
<td>94</td>
<td>510</td>
<td>20</td>
</tr>
<tr>
<td>P-016.80P</td>
<td>120</td>
<td>16</td>
<td>111</td>
<td>5800</td>
<td>49</td>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>P-016.90P</td>
<td>180</td>
<td>16</td>
<td>163</td>
<td>6000</td>
<td>33</td>
<td>1600</td>
<td>7</td>
</tr>
<tr>
<td>P-025.10P</td>
<td>15</td>
<td>25</td>
<td>20</td>
<td>6800</td>
<td>130</td>
<td>1300</td>
<td>19</td>
</tr>
<tr>
<td>P-025.20P</td>
<td>30</td>
<td>25</td>
<td>33</td>
<td>12000</td>
<td>400</td>
<td>630</td>
<td>35</td>
</tr>
<tr>
<td>P-025.40P</td>
<td>60</td>
<td>25</td>
<td>60</td>
<td>13000</td>
<td>220</td>
<td>1300</td>
<td>19</td>
</tr>
<tr>
<td>P-025.80P</td>
<td>120</td>
<td>25</td>
<td>113</td>
<td>14000</td>
<td>120</td>
<td>2600</td>
<td>10</td>
</tr>
<tr>
<td>P-025.90P</td>
<td>180</td>
<td>25</td>
<td>165</td>
<td>14000</td>
<td>80</td>
<td>4000</td>
<td>7</td>
</tr>
<tr>
<td>P-035.10P</td>
<td>15</td>
<td>35</td>
<td>21</td>
<td>18000</td>
<td>1200</td>
<td>530</td>
<td>55</td>
</tr>
<tr>
<td>P-035.20P</td>
<td>30</td>
<td>35</td>
<td>34</td>
<td>23000</td>
<td>760</td>
<td>1200</td>
<td>34</td>
</tr>
<tr>
<td>P-035.40P</td>
<td>60</td>
<td>35</td>
<td>61</td>
<td>26000</td>
<td>430</td>
<td>2500</td>
<td>19</td>
</tr>
<tr>
<td>P-035.80P</td>
<td>120</td>
<td>35</td>
<td>114</td>
<td>28000</td>
<td>230</td>
<td>5200</td>
<td>10</td>
</tr>
<tr>
<td>P-035.90P</td>
<td>180</td>
<td>35</td>
<td>166</td>
<td>29000</td>
<td>160</td>
<td>7800</td>
<td>7</td>
</tr>
<tr>
<td>P-045.20P</td>
<td>30</td>
<td>45</td>
<td>36</td>
<td>36000</td>
<td>1200</td>
<td>2100</td>
<td>32</td>
</tr>
<tr>
<td>P-045.40P</td>
<td>60</td>
<td>45</td>
<td>63</td>
<td>41000</td>
<td>680</td>
<td>4300</td>
<td>18</td>
</tr>
<tr>
<td>P-045.80P</td>
<td>120</td>
<td>45</td>
<td>116</td>
<td>44000</td>
<td>370</td>
<td>8900</td>
<td>10</td>
</tr>
<tr>
<td>P-045.90P</td>
<td>180</td>
<td>45</td>
<td>169</td>
<td>46000</td>
<td>250</td>
<td>13000</td>
<td>7</td>
</tr>
<tr>
<td>P-056.20P</td>
<td>30</td>
<td>56</td>
<td>36</td>
<td>54000</td>
<td>1800</td>
<td>3300</td>
<td>32</td>
</tr>
<tr>
<td>P-056.40P</td>
<td>60</td>
<td>56</td>
<td>63</td>
<td>66000</td>
<td>1100</td>
<td>6700</td>
<td>18</td>
</tr>
<tr>
<td>P-056.80P</td>
<td>120</td>
<td>56</td>
<td>116</td>
<td>68000</td>
<td>570</td>
<td>14000</td>
<td>10</td>
</tr>
<tr>
<td>P-056.90P</td>
<td>180</td>
<td>56</td>
<td>169</td>
<td>70000</td>
<td>390</td>
<td>21000</td>
<td>7</td>
</tr>
</tbody>
</table>

Unloaded (longitudinal) resonant frequency measured at 1 Vpp, capacitance at 1 Vpp, 1 kHz. Blocking force at 1000 V.

Standard PZT ceramic type: PIC 255 (see page 40)
Operating voltage range: 0 to 1000 V
Operating temperature range: -20 to +150 °C
Standard mechanical interface (top & bottom): steel plates, 0.5 to 2 mm thick (depends on model)
Standard electrical interfaces: PTFE insulated wires, pigtail length 100 mm
Available options: integrated piezo sensor or strain gauge sensors, non-magnetic, UHV, etc.

Other specifications on request.
Specifications subject to change without notice.
PICA-Thru Piezo Stack Actuators with Aperture

- Clear Aperture for Transmitted-Light Applications
- Large Cross-Sections Available (to 56 mm Diameter)
- Variety of Shapes
- Extreme Reliability >10^9 Cycles
- Proven and Flexible Design
- Sub-Nanometer Resolution / Sub-Millisecond Settling-Time
- Vacuum Compatible Versions

PICA-Thru actuators are hollow piezo stack actuators, offered in a large variety of standard shapes and sizes with additional custom designs to meet all customer requirements. They combine the advantage of a clear aperture with the strength and force generation of stack actuators. These tubular devices are high-resolution linear actuators for static and dynamic applications.

Ultra-High Reliability, High Displacement, Low Power Requirements

PICA piezo actuators are specifically designed for high-duty-cycle applications. With our extensive applications knowledge, gained over several decades, we know how to build performance that does not come at the price of reliability. All materials used are specifically matched for robustness and lifetime. Endurance tests on PICA actuators prove consistent performance, even after billions (1,000,000,000) of cycles. The combination of high displacement and low electrical capacitance provides for excellent dynamic behavior with reduced driving-power requirements.

Flexibility: PI Ceramic’s Strength

All manufacturing processes at PI Ceramic are set up for maximum flexibility. Should our standard actuators not fit your application, let us provide you with a custom design. Our engineers will work with you to find the optimum solution for your application at a very attractive price, even for small quantities. Some of our custom capabilities are listed below:

- Custom Materials
- Custom Voltage Ranges
- Custom Geometries
- Custom Displacement
- Custom Load / Force Ranges
- Custom Endplates (Alumina, Glass, Sapphire, …)
- Extra-Tight Length Tolerances
- Custom-Molded Versions
- Integrated Piezoelectric Sensor Discs
- Low Temperature Versions
- Vacuum Versions

Short Leadtime for Standard & Custom Designs

Because all piezoelectric materials used in PICA actuators are manufactured at PI Ceramic, leadtimes are short and quality is outstanding. All standard and custom PICA actuators are delivered with performance test sheets.

Amplifiers, Drivers & Controllers

PI offers a wide range of control electronics for piezo actuators (see page 28 and www.pi.ws) from low-power drivers to multi-channel, closed-loop, digital controllers. Of course, PI also designs custom amplifiers and controllers.
PICA-Thru piezo actuator dimensions, see technical data table for further information.

Custom PICA-Thru piezo actuator with 56 mm outer diameter and 8 mm inner diameter, 250 µm displacement. Pen for size comparison.

Technical Data / Ordering Numbers

<table>
<thead>
<tr>
<th>Ordering Number</th>
<th>Displacement [µm -10/+20%]</th>
<th>Diameter OD [mm]</th>
<th>Diameter ID [mm]</th>
<th>Length L [mm ±0.5]</th>
<th>Blocking force [N]</th>
<th>Stiffness [N/µm]</th>
<th>Capacitance [nF ±20%]</th>
<th>Resonant frequency [kHz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-010.00H</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>7</td>
<td>1200</td>
<td>230</td>
<td>15</td>
<td>144</td>
</tr>
<tr>
<td>P-010.05H</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>12</td>
<td>1300</td>
<td>130</td>
<td>29</td>
<td>84</td>
</tr>
<tr>
<td>P-010.10H</td>
<td>15</td>
<td>10</td>
<td>5</td>
<td>15</td>
<td>1700</td>
<td>110</td>
<td>40</td>
<td>67</td>
</tr>
<tr>
<td>P-010.15H</td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>21</td>
<td>1500</td>
<td>76</td>
<td>59</td>
<td>48</td>
</tr>
<tr>
<td>P-010.20H</td>
<td>30</td>
<td>10</td>
<td>5</td>
<td>27</td>
<td>1800</td>
<td>59</td>
<td>82</td>
<td>39</td>
</tr>
<tr>
<td>P-010.30H</td>
<td>40</td>
<td>10</td>
<td>5</td>
<td>40</td>
<td>1600</td>
<td>40</td>
<td>120</td>
<td>28</td>
</tr>
<tr>
<td>P-010.40H</td>
<td>60</td>
<td>10</td>
<td>5</td>
<td>54</td>
<td>1800</td>
<td>29</td>
<td>180</td>
<td>20</td>
</tr>
<tr>
<td>P-016.00H</td>
<td>5</td>
<td>16</td>
<td>8</td>
<td>7</td>
<td>2900</td>
<td>580</td>
<td>42</td>
<td>144</td>
</tr>
<tr>
<td>P-016.05H</td>
<td>10</td>
<td>16</td>
<td>8</td>
<td>12</td>
<td>3400</td>
<td>340</td>
<td>83</td>
<td>84</td>
</tr>
<tr>
<td>P-016.10H</td>
<td>15</td>
<td>16</td>
<td>8</td>
<td>15</td>
<td>4100</td>
<td>270</td>
<td>120</td>
<td>67</td>
</tr>
<tr>
<td>P-016.15H</td>
<td>20</td>
<td>16</td>
<td>8</td>
<td>21</td>
<td>3800</td>
<td>190</td>
<td>170</td>
<td>48</td>
</tr>
<tr>
<td>P-016.20H</td>
<td>30</td>
<td>16</td>
<td>8</td>
<td>27</td>
<td>4500</td>
<td>150</td>
<td>230</td>
<td>39</td>
</tr>
<tr>
<td>P-016.30H</td>
<td>40</td>
<td>16</td>
<td>8</td>
<td>40</td>
<td>4000</td>
<td>100</td>
<td>340</td>
<td>28</td>
</tr>
<tr>
<td>P-016.40H</td>
<td>60</td>
<td>16</td>
<td>8</td>
<td>52</td>
<td>4700</td>
<td>78</td>
<td>490</td>
<td>21</td>
</tr>
<tr>
<td>P-025.10H</td>
<td>15</td>
<td>25</td>
<td>16</td>
<td>16</td>
<td>7400</td>
<td>490</td>
<td>220</td>
<td>63</td>
</tr>
<tr>
<td>P-025.20H</td>
<td>30</td>
<td>25</td>
<td>16</td>
<td>27</td>
<td>8700</td>
<td>290</td>
<td>430</td>
<td>39</td>
</tr>
<tr>
<td>P-025.40H</td>
<td>60</td>
<td>25</td>
<td>16</td>
<td>51</td>
<td>9000</td>
<td>150</td>
<td>920</td>
<td>22</td>
</tr>
<tr>
<td>P-025.50H</td>
<td>80</td>
<td>25</td>
<td>16</td>
<td>66</td>
<td>9600</td>
<td>120</td>
<td>1200</td>
<td>17</td>
</tr>
</tbody>
</table>

Unloaded (longitudinal) resonant frequency measured at 1 Vpp, capacitance at 1 Vpp, 1 kHz. Blocking force at 1000 V.

Standard PZT ceramic type: PIC 151 (see page 40)
Operating voltage range: 0 to 1000 V
Operating temperature range: -20 to +85 °C
Standard mechanical interface (top & bottom): ceramic, 0.5 - 2 mm thick
Standard electrical interface: two PTFE insulated wires, pigtail length 100 mm
Available options: integrated piezo sensor or strain gauge sensors, vacuum compatible, etc.

Other specifications on request.
Specifications subject to change without notice.
PICA-Shear Piezo Actuators–Compact Multiaxis Motion

PICA-Shear actuators are available in cross-sections from 3 mm x 3 mm to 16 mm x 16 mm.

High Stiffness under High Duty Cycles
PICA-Shear actuators exhibit high stiffness, both parallel and perpendicular to the motion direction. Based on the piezoelectric shear effect, PICA-Shear X and XY actuators show almost twice the displacement amplitudes of conventional piezo actuators at the same electric field. Consequently they can be made smaller and have higher resonant frequencies. This results in reduced power requirements for a given induced displacement in dynamic X- and Y-axis operation.

Ultra-High Reliability, High Displacement, Low Power Requirements
PICA actuators are specifically designed for high-duty-cycle applications. All materials used are specifically matched for robustness and lifetime. Endurance tests proved consistent performance even after billions (1,000,000,000) of cycles. The combination of high displacement and low electrical capacitance provides for excellent dynamic behavior with reduced driving power requirements.

Flexibility: PI Ceramic’s Strength
All manufacturing processes at PI Ceramic are set up for maximum flexibility. Should our standard actuators not fit your application, let us provide you with a custom design. Our engineers will work with you to find the optimum solution for your application, at a very attractive price, even for small quantities. Some of our custom capabilities are listed below:

- Compact Multiaxis Actuators
- X, XY, XZ and XYZ Versions
- High Resonant Frequencies
- Extreme Reliability >10⁹ Cycles
- Picometer-Resolution / Sub-Millisecond Settling Time
- Ultra-High-Vacuum-Compatible Versions to 10⁻⁹ hPa
- Non-Magnetic and Clear Aperture Versions

Vacuum Versions to 10⁻⁹ hPa
Non-Magnetic Designs
Clear Aperture
Custom Endplates (Alumina, Glass, ...)
Extra-Tight Length Tolerances, to 0.02 mm
Optical Surface Quality
Custom Geometries
Custom Displacement
Custom Load / Force Ranges
Low-Temperature Designs, Down to LHe
Combination with Piezoelectric Shear Sensors (no Pyroelectric Effect)

Short Leadtime for Standard & Custom Designs
Because all piezoelectric materials used in PICA actuators are manufactured at PI Ceramic, leadtimes are short and quality is outstanding. All standard and custom PICA actuators are delivered with performance test sheets.

Amplifiers, Drivers & Controllers
PI offers a wide range of control electronics for piezo actuators (see page 28 and www.pi.ws) from low power drivers to multi-channel, closed-loop, digital controllers. Of course, PI also designs custom amplifiers and controllers.

Application Examples
- NanoPositioning
- Precision mechanics
- Active vibration cancellation
- Semiconductor manufacturing and testing
- Laser tuning
- Atomic force microscopy
- Switching
- Scanning applications
- Micro-stepper motors

PICA-Shear Piezo Actuators–Compact Multiaxis Motion

P-111-P-151

Amplifiers, Drivers & Controllers
PI offers a wide range of control electronics for piezo actuators (see page 28 and www.pi.ws) from low power drivers to multi-channel, closed-loop, digital controllers. Of course, PI also designs custom amplifiers and controllers.

Application Examples
- NanoPositioning
- Precision mechanics
- Active vibration cancellation
- Semiconductor manufacturing and testing
- Laser tuning
- Atomic force microscopy
- Switching
- Scanning applications
- Micro-stepper motors

Amplifiers, Drivers & Controllers
PI offers a wide range of control electronics for piezo actuators (see page 28 and www.pi.ws) from low power drivers to multi-channel, closed-loop, digital controllers. Of course, PI also designs custom amplifiers and controllers.
Technical Data / Ordering Numbers

<table>
<thead>
<tr>
<th>Ordering Number</th>
<th>Active Axes</th>
<th>Displacement (µm ±10% / 20%)</th>
<th>Cross section A x B / ID (mm)</th>
<th>Length L (mm ±0.3)</th>
<th>Max. Shear Load (N)</th>
<th>Axial Stiffness (N/µm)</th>
<th>Capacitance (pF ±20%)</th>
<th>Resonant Frequency (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-111.01 X 1*</td>
<td>3 x 3</td>
<td>3.5</td>
<td>20</td>
<td>70</td>
<td>0.5</td>
<td>50</td>
<td>1.5</td>
<td>330</td>
</tr>
<tr>
<td>P-111.03 X 3*</td>
<td>3 x 3</td>
<td>5.5</td>
<td>20</td>
<td>45</td>
<td>1.5</td>
<td>50</td>
<td>1.5</td>
<td>210</td>
</tr>
<tr>
<td>P-111.05 X 5*</td>
<td>3 x 3</td>
<td>7.5</td>
<td>20</td>
<td>90</td>
<td>7</td>
<td>90</td>
<td>1.5</td>
<td>155</td>
</tr>
<tr>
<td>P-121.01 X 1*</td>
<td>5 x 5</td>
<td>3.5</td>
<td>50</td>
<td>190</td>
<td>1.4</td>
<td>50</td>
<td>4.2</td>
<td>330</td>
</tr>
<tr>
<td>P-121.03 X 3*</td>
<td>5 x 5</td>
<td>5.5</td>
<td>50</td>
<td>120</td>
<td>4.2</td>
<td>50</td>
<td>7</td>
<td>210</td>
</tr>
<tr>
<td>P-121.05 X 5*</td>
<td>5 x 5</td>
<td>7.5</td>
<td>50</td>
<td>90</td>
<td>7</td>
<td>90</td>
<td>7</td>
<td>155</td>
</tr>
<tr>
<td>P-141.03 X 3*</td>
<td>10 x 10</td>
<td>5.5</td>
<td>200</td>
<td>490</td>
<td>17</td>
<td>17</td>
<td>7</td>
<td>210</td>
</tr>
<tr>
<td>P-141.05 X 5*</td>
<td>10 x 10</td>
<td>7.5</td>
<td>200</td>
<td>360</td>
<td>28</td>
<td>360</td>
<td>17</td>
<td>155</td>
</tr>
<tr>
<td>P-141.10 X 10</td>
<td>10 x 10</td>
<td>12</td>
<td>230</td>
<td>50</td>
<td>50</td>
<td>120</td>
<td>17</td>
<td>100</td>
</tr>
<tr>
<td>P-151.03 X 3*</td>
<td>16 x 16</td>
<td>5.5</td>
<td>300</td>
<td>1300</td>
<td>43</td>
<td>1300</td>
<td>7</td>
<td>210</td>
</tr>
<tr>
<td>P-151.05 X 5</td>
<td>16 x 16</td>
<td>7.5</td>
<td>300</td>
<td>920</td>
<td>71</td>
<td>920</td>
<td>71</td>
<td>155</td>
</tr>
<tr>
<td>P-151.10 X 10</td>
<td>16 x 16</td>
<td>12</td>
<td>300</td>
<td>580</td>
<td>130</td>
<td>580</td>
<td>130</td>
<td>100</td>
</tr>
<tr>
<td>P-112.01 XY 1 x 1*</td>
<td>3 x 3</td>
<td>5</td>
<td>20</td>
<td>50</td>
<td>0.5 x 0.5</td>
<td>230</td>
<td>0.5 x 0.5</td>
<td>230</td>
</tr>
<tr>
<td>P-112.03 XY 3 x 3*</td>
<td>3 x 3</td>
<td>9.5</td>
<td>10</td>
<td>29</td>
<td>1.4 x 1.4</td>
<td>120</td>
<td>1.4 x 1.4</td>
<td>120</td>
</tr>
<tr>
<td>P-122.01 XY 1 x 1*</td>
<td>5 x 5</td>
<td>5</td>
<td>50</td>
<td>140</td>
<td>1.4 x 1.4</td>
<td>230</td>
<td>1.4 x 1.4</td>
<td>230</td>
</tr>
<tr>
<td>P-122.03 XY 5 x 5</td>
<td>5 x 5</td>
<td>9.5</td>
<td>40</td>
<td>70</td>
<td>4.2 x 4.2</td>
<td>120</td>
<td>4.2 x 4.2</td>
<td>120</td>
</tr>
<tr>
<td>P-122.05 XY 5 x 5</td>
<td>5 x 5</td>
<td>14</td>
<td>30</td>
<td>50</td>
<td>7 x 7</td>
<td>85</td>
<td>7 x 7</td>
<td>85</td>
</tr>
<tr>
<td>P-142.03 XY 3 x 3*</td>
<td>10 x 10</td>
<td>9.5</td>
<td>200</td>
<td>280</td>
<td>17 x 17</td>
<td>120</td>
<td>17 x 17</td>
<td>120</td>
</tr>
<tr>
<td>P-142.05 XY 5 x 5</td>
<td>10 x 10</td>
<td>14</td>
<td>100</td>
<td>190</td>
<td>28 x 28</td>
<td>85</td>
<td>28 x 28</td>
<td>85</td>
</tr>
<tr>
<td>P-142.10 XY 10 x 10</td>
<td>10 x 10</td>
<td>23</td>
<td>50</td>
<td>120</td>
<td>50 x 50</td>
<td>50</td>
<td>50 x 50</td>
<td>50</td>
</tr>
<tr>
<td>P-152.03 XY 3 x 3*</td>
<td>16 x 16</td>
<td>9.5</td>
<td>300</td>
<td>730</td>
<td>43 x 43</td>
<td>120</td>
<td>43 x 43</td>
<td>120</td>
</tr>
<tr>
<td>P-152.05 XY 5 x 5</td>
<td>16 x 16</td>
<td>14</td>
<td>300</td>
<td>490</td>
<td>71 x 71</td>
<td>85</td>
<td>71 x 71</td>
<td>85</td>
</tr>
<tr>
<td>P-152.10 XY 10 x 10</td>
<td>16 x 16</td>
<td>23</td>
<td>100</td>
<td>300</td>
<td>130 x 130</td>
<td>50</td>
<td>130 x 130</td>
<td>50</td>
</tr>
<tr>
<td>P-123.01 XYZ 1 x 1 x 1*</td>
<td>5 x 5</td>
<td>7.5</td>
<td>40</td>
<td>90</td>
<td>1.4 x 1.4 x 2.9</td>
<td>155</td>
<td>1.4 x 1.4 x 2.9</td>
<td>155</td>
</tr>
<tr>
<td>P-123.03 XYZ 3 x 3 x 3*</td>
<td>5 x 5</td>
<td>15.5</td>
<td>10</td>
<td>45</td>
<td>4.2 x 4.2 x 7.3</td>
<td>75</td>
<td>4.2 x 4.2 x 7.3</td>
<td>75</td>
</tr>
<tr>
<td>P-143.01 XYZ 1 x 1 x 1*</td>
<td>10 x 10</td>
<td>7.5</td>
<td>200</td>
<td>360</td>
<td>5.6 x 5.6 x 11</td>
<td>155</td>
<td>5.6 x 5.6 x 11</td>
<td>155</td>
</tr>
<tr>
<td>P-143.03 XYZ 3 x 3 x 3*</td>
<td>10 x 10</td>
<td>15.5</td>
<td>100</td>
<td>170</td>
<td>17 x 17 x 29</td>
<td>75</td>
<td>17 x 17 x 29</td>
<td>75</td>
</tr>
<tr>
<td>P-143.05 XYZ 5 x 5 x 5</td>
<td>10 x 10</td>
<td>23</td>
<td>50</td>
<td>120</td>
<td>28 x 28 x 47</td>
<td>50</td>
<td>28 x 28 x 47</td>
<td>50</td>
</tr>
<tr>
<td>P-153.03 XYZ 3 x 3 x 3*</td>
<td>16 x 16</td>
<td>15.5</td>
<td>300</td>
<td>450</td>
<td>43 x 43 x 73</td>
<td>75</td>
<td>43 x 43 x 73</td>
<td>75</td>
</tr>
<tr>
<td>P-153.05 XYZ 5 x 5 x 5</td>
<td>16 x 16</td>
<td>23</td>
<td>100</td>
<td>300</td>
<td>71 x 71 x 120</td>
<td>50</td>
<td>71 x 71 x 120</td>
<td>50</td>
</tr>
<tr>
<td>P-153.10 XYZ 10 x 10 x 10</td>
<td>16 x 16</td>
<td>40</td>
<td>60</td>
<td>170</td>
<td>130 x 130 x 230</td>
<td>30</td>
<td>130 x 130 x 230</td>
<td>30</td>
</tr>
<tr>
<td>P-153.10H XYZ 10 x 10 x 10</td>
<td>16 x 16 / 10</td>
<td>40</td>
<td>20</td>
<td>120</td>
<td>89 x 89 x 160</td>
<td>30</td>
<td>89 x 89 x 160</td>
<td>30</td>
</tr>
<tr>
<td>P-151.03H X 3*</td>
<td>16 x 16 / 10</td>
<td>5.5</td>
<td>200</td>
<td>870</td>
<td>30</td>
<td>870</td>
<td>30</td>
<td>210</td>
</tr>
<tr>
<td>P-151.05H X 5</td>
<td>16 x 16 / 10</td>
<td>7.5</td>
<td>200</td>
<td>640</td>
<td>49</td>
<td>640</td>
<td>49</td>
<td>155</td>
</tr>
<tr>
<td>P-151.10H X 10</td>
<td>16 x 16 / 10</td>
<td>12</td>
<td>200</td>
<td>460</td>
<td>89</td>
<td>460</td>
<td>89</td>
<td>100</td>
</tr>
</tbody>
</table>

* Tolerances ±30%

Unloaded (longitudinal) resonant frequency measured at 1 V_{rms}, capacitance at 1 V_{rms}, 1 kHz.

Standard PZT ceramic type: PIC 255 (see page 40). For more information on the shear effect see p. 42.

Operating voltage range: -250 V to +250 V

Operating temperature range: -20 to +85 °C

Standard mechanical interface (top & bottom): ceramic plates

Available options: integrated piezo sensor, non-magnetic, UHV, low temperature, clear aperture etc.

Other specifications on request.

Specifications subject to change without notice.

PI Ceramic Interface (both sides)

1. Ceramic interface (both sides)
2. PTFE insulated wires for high voltage control (fed +250 V / black GND, length >100 mm, D=0.7 mm), axial position centered at the termination line of the stack element
3. Number of axes elements and wires is dependent on stack type

Moving the NanoWorld | www.piceramic.com
PICMA™ Multilayer Bender Actuators

Application Examples
- Wire bonding
- Pneumatic valves
- Fiber optic switches
- Beam deflection
- Micropositioning
- Acceleration sensors

PL112-PL140

Bender actuators with optional wire leads (order number extension .x1); microprocessor for size comparison.

For OEM Applications
- Ceramic Insulation
- Positioning Range up to 2 mm
- Fast Response (< 10 msec)
- Nanometer-Range Resolution
- Low Operating Voltage
- Vacuum-Compatibe Versions
- Available with Integrated Position Sensor
- Special OEM and Bench-Top Amplifiers/Drivers Available

PICMA™-series multilayer bender actuators provide a deflection of up to 2 mm, forces up to 2 N (200 grams) and response times in the millisecond range. These multilayer piezoelectric components are manufactured from ceramic layers of only about 25 µm thickness. They feature internal silver-palladium electrodes and ceramic insulation applied in a co-firing process. The bender have two outer active areas and one central electrode network dividing the actuator in two segments of equal capacitance, similar to a classical parallel bimorph.

Advantages
PICMA™ Bender piezo actuators offer several advantages over classic bimorph components manufactured by gluing together two ceramic plates (0.1 to 1 mm thick): faster response time and higher stiffness. The main advantage, however, is the drastically reduced (by a factor of 3 to 10) operating voltage of 60 V only. The reduced voltage allows smaller drive electronics and new applications, such as in medical equipment. Additionally these devices offer an improved humidity resistance due to the 100 % ceramic insulation.

Long Lifetime and High Performance—Ideal for Dynamic Operation
PICMA™ Bender actuators are superior to conventional actuators in high-endurance situations. They show substantially longer lifetimes both in static and dynamic operation, even in harsh environments. The monolithic, ceramic-insulated design makes polymer-film insulation unnecessary. Diffusion of water molecules into the insulation layer, the major cause of dielectric breakdown, is greatly reduced by the use of cofired, outer ceramic insulation.

The high Curie temperature of 320 °C gives PICMA™ actuators a usable temperature range extending up to 150 °C, well above the 80 °C limit of conventional multilayer actuators. At the low end, operation down to a few kelvin is possible (with some reduction in performance specifications).

Optimum UHV Compatibility—Minimal Outgassing
The lack of polymer insulation and the high Curie temperature make for optimal ultra-high-vacuum compatibility (no measurable outgassing / high bakeout temperatures, up to 150 °C).

Amplifiers, Drivers & Controllers
PI offers a wide range of standard amplifiers and controllers for piezo actuators (see page 28 and www.pi.ws). The E-650.00 and E-650.OE drivers were specifically designed to operate PICMA™ Bender actuators. For closed-loop positioning applications, a variety of analog and digital controllers are available. Of course, PI also designs custom amplifiers and controllers.
Custom closed-loop bender actuator with strain gauge sensor applied for position measurement.

Recommended clamp: non-conducting material with rounded edges at clamping interface (for ceramic protection). Not included. See table for dimensions L, W and T.

Full differential voltage control.
Pin assignment:
1 -30 V [or GND]
2 -30 V to +30 V [or 0 to 60 V]
3 +30 V [or +60 V]

Technical Data / Ordering Numbers

<table>
<thead>
<tr>
<th>Ordering Number*</th>
<th>Operating Voltage [V]</th>
<th>Nominal displacement [µm ±20%]</th>
<th>Free length [mm]</th>
<th>Dimensions L x W x T [mm]</th>
<th>Blocking Force [N]</th>
<th>El. capacitance [µF ±20%]</th>
<th>Resonant Frequency [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL112.10**</td>
<td>0 - 60</td>
<td>±80</td>
<td>12</td>
<td>17.8 x 9.6 x 0.65</td>
<td>2.0</td>
<td>2 x 1.1</td>
<td>> 1000</td>
</tr>
<tr>
<td>PL122.10</td>
<td>0 - 60</td>
<td>±250</td>
<td>22</td>
<td>25.0 x 9.6 x 0.65</td>
<td>1.1</td>
<td>2 x 2.4</td>
<td>660</td>
</tr>
<tr>
<td>PL127.10</td>
<td>0 - 60</td>
<td>±450</td>
<td>27</td>
<td>31.0 x 9.6 x 0.65</td>
<td>1.0</td>
<td>2 x 3.4</td>
<td>380</td>
</tr>
<tr>
<td>PL128.10**</td>
<td>0 - 60</td>
<td>±450</td>
<td>28</td>
<td>35.5 x 6.3 x 0.75</td>
<td>0.5</td>
<td>2 x 1.2</td>
<td>360</td>
</tr>
<tr>
<td>PL140.10</td>
<td>0 - 60</td>
<td>±1000</td>
<td>40</td>
<td>45.0 x 11.0 x 0.6</td>
<td>0.5</td>
<td>2 x 4.0</td>
<td>160</td>
</tr>
</tbody>
</table>

* For optional 100 mm wire leads change order number extension to .x1 (e.g. PL 112.11).

All parameters depend on actual clamping conditions and applied load.
Operating Temperature: -20 °C to + 85 °C (** max. 150 °C)
Low temperature option available
Closed-loop option on request (strain-gauge-sensor)

Other specifications on request.
Specifications subject to change without notice.
Capacitance measured at 1 Vpp, 1 kHz. Unloaded ("free bending") resonant frequency measured at 1 Vpp.
PT series piezoceramic tubes are used in a wide range of applications from microdispensing to scanning microscopy. These monolithic components contract laterally (radially) and longitudinally when a voltage is applied between their inner and outer electrodes. Multi-electrode tubes are available to provide XYZ motion for use in manipulation and scanning microscopy applications (PI also provides ultra-high linearity closed-loop scanning stages for SPM and nanomanipulation).

Precision and Flexibility: PI Ceramic’s Strength

PT piezo tubes are manufactured to the tightest tolerances. We can provide tubes with diameters as small as 0.8 mm and tolerances as tight as 0.025 mm. All manufacturing processes at PI Ceramic are set-up for maximum flexibility. Should our standard actuators not fit your application, let us provide you with a custom design. Our engineers will work with you to find the optimum solution for your application, at a very attractive price, even for small quantities. Some of our custom capabilities are listed below:

- Custom Materials
- Custom Voltage Ranges
- Custom Geometries
- Custom Displacement
- Extra-Tight Tolerances
- Applied Sensors
- Special High / Low Temperature Versions
- Ultra-High Vacuum Versions

Short Leadtime for Standard & Custom Designs

Because all piezoelectric materials used in PT tube actuators are manufactured at PI Ceramic, leadtimes are short and quality is outstanding. All standard and custom actuators are delivered with performance test sheets.

Amplifiers, Drivers & Controllers

PI offers a wide range of control electronics for piezo actuators (see page 28 and www.pi.ws) from low power drivers to multi-channel, closed-loop, digital controllers.

Technical Data / Ordering Numbers

<table>
<thead>
<tr>
<th>Ordering Number</th>
<th>Dimensions L x OD x ID</th>
<th>Max. Operating Voltage (V)</th>
<th>Electrical Capacitance (nF ±20%)</th>
<th>Axial Contraction µm @ max. V</th>
<th>Radial Contraction µm @ max. V</th>
<th>XY Deflection (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT120.00</td>
<td>20 x 2.2 x 1.0</td>
<td>500</td>
<td>3</td>
<td>4</td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>PT130.00</td>
<td>30 x 3.2 x 2.2</td>
<td>500</td>
<td>10</td>
<td>8</td>
<td>0.5</td>
<td>n/a</td>
</tr>
<tr>
<td>PT130.90</td>
<td>30 x 3.2 x 2.2</td>
<td>500</td>
<td>12</td>
<td>8</td>
<td>0.8</td>
<td>n/a</td>
</tr>
<tr>
<td>PT130.94*</td>
<td>30 x 3.2 x 2.2</td>
<td>±200</td>
<td>4 x 2.4</td>
<td>8</td>
<td>0.8</td>
<td>±8</td>
</tr>
<tr>
<td>PT130.10</td>
<td>30 x 6.35 x 5.35</td>
<td>500</td>
<td>18</td>
<td>6</td>
<td>1.0</td>
<td>n/a</td>
</tr>
<tr>
<td>PT130.14*</td>
<td>30 x 6.35 x 5.35</td>
<td>±200</td>
<td>4 x 3.8</td>
<td>6</td>
<td>1.0</td>
<td>±8</td>
</tr>
<tr>
<td>PT130.20</td>
<td>30 x 10.0 x 9.0</td>
<td>500</td>
<td>36</td>
<td>8</td>
<td>4</td>
<td>n/a</td>
</tr>
<tr>
<td>PT130.24*</td>
<td>30 x 10.0 x 9.0</td>
<td>±200</td>
<td>4 x 8.5</td>
<td>8</td>
<td>4</td>
<td>±14</td>
</tr>
<tr>
<td>PT130.30</td>
<td>30 x 10.0 x 8.0</td>
<td>1000</td>
<td>18</td>
<td>8</td>
<td>3</td>
<td>n/a</td>
</tr>
<tr>
<td>PT130.40</td>
<td>30 x 20.0 x 18.0</td>
<td>1000</td>
<td>35</td>
<td>8</td>
<td>5</td>
<td>n/a</td>
</tr>
<tr>
<td>PT140.70</td>
<td>40 x 40.0 x 38.0</td>
<td>1000</td>
<td>70</td>
<td>15</td>
<td>10</td>
<td>n/a</td>
</tr>
</tbody>
</table>

All models available with 40 mm length, except PT120.00

* Quartered electrodes for XY deflection

All standard PT Tubes are made of PIC151 PZT material (see page 40).

** OD, ID ±0.05 mm all models except PT120 / PT 130.00 (±0.1 mm)

Other specifications on request.

Specifications subject to change without notice.

Application Examples

- Micropositioning
- Scanning Microscopy (STM, AFM, etc.)
- Fiber Stretching / Modulation of Optical Path Length
- Micro Pumps / Ink-Jet Printing
- Micromanipulators
- Ultrasonic and Sonar Applications
Design

Dimensions: max. L: 50 mm
max. OD: 80 mm
min. wall thickness: 0.30 mm

Electrodes: fired silver-plated
inside and outside
as standard; thin
film electrodes (e.g. copper-nickel
or gold) as outer
electrodes optional

Options: single or double
wrapped, circumferential bands
axial segmenting
(quartered outer
electrodes)

Polarization: inner electrode,
positive potential

Useful Equations

Axial contraction and radial dis-
placement of piezo tube actu-
tors can be estimated by the
following equations:

(Equation 1)
\[\Delta L = d_{31} \cdot L \cdot \frac{U}{d} \]
where:
\(d_{31} = \text{strain coefficient (dis-
placement normal to polari-
zation direction)} \) [m/V]
\(L = \text{length of the ceramic}
tube [m] \)
\(U = \text{operating voltage [V]} \)
\(d = \text{wall thickness [m]} \)

(Equation 2)
\[\Delta d = d_{33} \cdot U \]
where:
\(\Delta d = \text{change in wall thick-
ness [m]} \)
\(d_{33} = \text{strain coefficient (field}
and displacement in polari-
zation direction)} \) [m/V]
\(U = \text{operating voltage [V]} \)

The radial contraction is the
superposition of the increase
in wall thickness and the tan-
gential contraction; it can be
estimated by the following
equation:

\[\frac{\Delta r}{r} = d_{31} \cdot \frac{U}{d} \]

where:
\(r = \text{tube radius} \)
\(d_{31} = \text{strain coefficient (dis-
placement normal to polari-
zation direction)} \) [m/V]
\(U = \text{operating voltage [V]} \)
\(d = \text{wall thickness [m]} \)

The quartered electrodes op-
tion makes XY scanning possi-
ble — employing the superpo-
sition of the axial and radial
contraction, similar to bending
devices. These scanner tubes,
which flex in X and Y, are wide-
ly used in scanning-probe
microscopes. The scan range
of these components is esti-
mated by:

(Equation 3)
\[\Delta x = \frac{2 \sqrt{2} \cdot d_{31} \cdot L^2 \cdot U}{\pi \cdot ID \cdot d} \]
where:
\(\Delta x = \text{scan range in X and Y}
(for symmetrical elec-
trodes) [m] \)
\(d_{31} = \text{strain coefficient (dis-
placement normal to polari-
zation direction)} \) [m/V]
\(U = \text{symmetric operating}
\text{voltage [V]} \)
\(L = \text{length [m]} \)
\(ID = \text{inner diameter [m]} \)
\(d = \text{wall thickness [m]} \)

Tube actuators are not
designed to withstand large
forces (see PICA-Thru actua-
tors), but their high resonant
frequencies make them espe-
cially suitable for dynamic
operation.

PT Tubes are also used as
transducers in ultrasonic and
sonar applications.
PI offers a wide variety of standard & custom amplifiers, drivers and closed-loop controllers for piezo actuators and nanopositioning systems. A few examples are given below. See the Physik Instrumente (PI) NanoPositioning catalog and website (www.pi.ws) for more information.

Examples

E-500 Modular Piezo Control Systems. See PI Catalog.

E-461 Amplifier Module (0.3 W, 1000 V). See p. 35.

E-650.00 Amplifier for Multilayer Bender Actuators (+/- 30 V, 18 W). See p. 29.

E-420 Power Amplifier Module (500 W peak power, 1100 V). See p. 36.

E-621 Amplifier & Servo-Controller Module with High-Speed RS-232 Interface (120 V, 14 W). See PI Catalog.
LVPZT Amplifiers for Multilayer Bender Actuators

E-650.00 is a bench-top piezo driver, especially designed for low-voltage, multilayer PZT bender actuators (“bimorphs”) such as the PL122 to PL140. It is equipped with a special circuit that can provide one fixed voltage and a variable voltage in the range of 0 to 60 V. The driver can output and sink a peak current of 300 mA. The E-650.00 can be operated in two ways:

I. **Manual operation:** Output voltage can be set by a 10-turn DC-offset potentiometer in the range of 0 to 60 V.

II. **External operation:** Output voltage is controlled by an analog signal applied to the BNC input, ranging from 0 to 10 V. Multiplying by the gain factor of 6, an output voltage range of 0 to 60 V results. The DC-offset potentiometer can be used to bias the control input voltage.

A 3½-digit LCD display shows the output voltage.

The E-650.OE is the OEM version of the E-650.00. It provides peak output power of 8 W. All inputs and outputs are via 8 header pins located on the bottom of the module. The E-650.OE is designed to be mounted on a circuit board. The electronics are fully enclosed in a metal case.

Technical Data

<table>
<thead>
<tr>
<th>Models</th>
<th>E-650.00</th>
<th>E-650.OE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Power amplifier</td>
<td>Power amplifier</td>
</tr>
<tr>
<td>Channels</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Maximum output power</td>
<td>18 W</td>
<td>8 W</td>
</tr>
<tr>
<td>Average output power</td>
<td>6 W</td>
<td>4 W</td>
</tr>
<tr>
<td>Peak output current < 5 ms</td>
<td>300 mA</td>
<td>140 mA</td>
</tr>
<tr>
<td>Avg. output current > 5 ms</td>
<td>60 mA</td>
<td>60 mA</td>
</tr>
<tr>
<td>Current limitation</td>
<td>Short-circuit proof</td>
<td>Short-circuit proof</td>
</tr>
<tr>
<td>Voltage gain</td>
<td>6 ±0.1</td>
<td>6 ±0.1</td>
</tr>
<tr>
<td>Polarity</td>
<td>positive</td>
<td>positive</td>
</tr>
<tr>
<td>Control input voltage</td>
<td>0 to +10 V</td>
<td>0 to +10 V</td>
</tr>
<tr>
<td>Display</td>
<td>3½-digit LCD</td>
<td>–</td>
</tr>
<tr>
<td>Output voltage</td>
<td>0 to 60 V, one additional fixed voltage of 60 V</td>
<td>0 to 60 V, one additional fixed voltage of 60 V</td>
</tr>
<tr>
<td>DC-offset setting</td>
<td>0 to 60 V at output, with 10-turn pot (E-650.00 only)</td>
<td>0 to 60 V at output, with 10-turn pot (E-650.00 only)</td>
</tr>
<tr>
<td>Input impedance</td>
<td>100 kΩ</td>
<td>100 kΩ</td>
</tr>
<tr>
<td>Frequency response</td>
<td>600 Hz @ 1000 nF load, 6 kHz @ no load</td>
<td>200 Hz @ 1000 nF load, 3 kHz @ no load</td>
</tr>
<tr>
<td>Control input socket</td>
<td>BNC</td>
<td>header pins</td>
</tr>
<tr>
<td>PZT voltage output socket</td>
<td>9-pin Sub-D</td>
<td>header pins</td>
</tr>
<tr>
<td>Dimensions</td>
<td>160 x 125 x 50 mm</td>
<td>70 x 42 x 30 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>0.7 kg (w/o P/S)</td>
<td>0.15 kg</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>90-240 VAC, 50-60 Hz (external switching P/S, included)</td>
<td>+/- 15 V, 315 mA max., stabilized</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to +50°C</td>
<td>0 to +50°C</td>
</tr>
</tbody>
</table>
The E-831.02 OEM piezo amplifier module is a very compact, cost-effective, single-channel power amplifier for low-voltage piezoelectric actuators (LVPZTs). It provides a peak output power of 12 W and average power of 2 W (expandable to 5 W with external heat sink). The E-831.02 is a high-precision amplifier with a fixed gain of 10.0 and outputs voltages in the range of -20 to 120 V for control input signals ranging from -2 to 12 V. The output is fully compensated for the capacitive loads of up to 10 µF typical of PI’s low-voltage PZTs such as PICMA™ piezo actuators. For monitoring purposes, the output voltage is internally divided by 100 and provided at a special monitor pin. Because piezo actuators require virtually no power in steady-state operation and the power consumption depends on the operating frequency, high-powered amplifiers are not required for many applications. With a peak output current of 100 mA (sink/source) the E-831 is well-suited for switching applications and fast transitions where the capacitive load (the piezo actuator) needs to be charged as quickly as possible. The small-signal bandwidth is about 3kHz.

Power Supplies for E-831.02
The E-841.05 (input voltage range 10 to 30V) and E-842.05 (input voltage range 30 V to 72 V) switched power supply modules provide all the operating voltages (+/-15 V, -26 V and +127 V DC) required by the E-831.02 amplifier module. Both models supply enough power for up to three E-831.02 amplifiers with a total output power of 5 W. A sync. input on the power supply allows synchronization of the internal switching frequency with an external clock (185 to 220 kHz) for elimination of interference in AC-driven position sensors or DACs.

Ordering Information

- **E-831.02** Single-Channel Amplifier Module for LVPZTs
- **E-841.05** Power Supply Module for E-831, Input 10 to 30 V
- **E-842.05** Power Supply Module for E-831, Input 30 to 72 V

Easy Implementation

E-831 and E-841/E-842 modules are enclosed in metal cases with solderable pins for PCB mounting. They are designed to work together without additional components.

Triple Safety

The E-831 amplifier is short-circuit proof with both a low-speed current limiter of 50 mA and a high-speed (8 msec) current limiter of 100 mA. When the case temperature rises above 70°C (can be reached after a few minutes with maximum current) an internal temperature sensor shuts down the output stage until the temperature drops below 60°C. This operation mode is indicated by the active-high TEMP-OFL TTL status line.
Technical Data E-831.02

Model: E-831.02

Function: Single-channel piezo amplifier module

Operating voltages:
- +15 V / 20 mA (14 to 16 V)
- -15 V / 20 mA (-14 to -16 V)
- +127 V / 1.8 mA (+125 to 135 V)
- -26 V / 1.8 mA (-24 to -30 V)

Output voltage range:
- From U+ - 6 V (121 V for U+ = 127 V) to U+ + 8 V (+20 V for U+ = 28 V)

Gain: 10 ± 0.1

Max. output current: 100 mA for 8 ms (sink/source)

Max. average current: 50 mA for 3 min without heatsink

Output protection: short-circuit protected, the module is overload protected to 70°C case temperature

Max. output power:
- 2 W without ext. heatsink
- 5 W with ext. heatsink or forced airflow

Control input range: -2 to +12 V

Input impedance: 100 kohm

Dynamic current requirements: depend on load, amplitude and slew rate

Cut off frequency: 3.5 kHz, no load

Operating temperature range: +5° to +50° Celsius

Case: Metal shielded case, size: 50x30x14 mm

Soldering pins: 1 mm diameter, 4 mm length

Technical Data E-84x.05

Models: E-841.05, E-842.05

Function: Power Supply Module for E-831

Output voltages:
- +127 V, 30 mA
- -26 V, 30 mA
- +15 V, 50 mA
- -15 V, 50 mA

Max. output Power: 8 W

Max. average Power: 8 W with forced air flow (5W without)

Output protection: short-circuit protected (1 min.)

Input voltage:
- 10 - 30 V (E-841.05)
- 30 - 72 V (E-842.05)

Quiescent current:
- 70 mA @15 V
- 35 mA @30 V
- 15 mA @72 V

Max. input current:
- 1000 mA (E-841.05 @ 10V)
- 200 mA (E-842.05 @ 72V)

Power-on, peak current: 1500 mA

Switching frequency: 100 kHz typical

External clock frequency: 200 kHz (185 - 220 kHz possible)

Synchronization signal: preferred TTL-level with duty cycle 50%; operating from 1.8 Vpp and offsets within ±7 V

Output ripple: < 100 mVpp

Operating temperature range: 0° to +60° Celsius (with power derating above 40 °C)

Case: Metal shielded case, size: 50x30x14 mm

Soldering pins: 1 mm diameter, 4 mm length
The E-610 is an OEM, stand-alone, amplifier & position servo-control board for low-voltage PZTs. Four versions are available: E-610.00 (open-loop, amplifier only) and the closed-loop versions E-610.S0, E-610.L0 and E-610.C0 (with additional circuitry for position sensing and servo-control).

Version E-610.S0 controls strain-gauge-sensor-equipped PZTs, version E-610.L0 controls LVDT-sensor-equipped PZTs and version E-610.C0 controls capacitive-sensor-equipped PZTs. The open-loop version (E-610.00) can be operated in two ways, the closed-loop versions in four ways:

I. **Open-Loop External Operation (amplifier mode):** Output voltage is controlled by an analog signal ranging from -2 to +12 V. Multiplying by the gain factor of 10, an output voltage range of -20 to +120 V results. If an external offset potentiometer (not included) is connected, it allows for continuous shifting of the input range between -2 V to +12 V and -12 V to +2 V.

II. **Open-Loop Manual Operation (power supply mode):** With 0 V input signal, output voltage can be set by an external, DC-offset potentiometer (not included) in the range of 0 to 100 V.

III. **Closed-Loop (position-control mode) External Operation:** Displacement of the PZT is controlled by an analog signal in the range of 0 to +10 V. The controller is calibrated in such a way that 10 V corresponds to maximum nominal displacement and 0 V corresponds to zero displacement. If an external offset potentiometer (not included) is connected, it can be used to add an offset voltage of 0 to 10 V to the input signal.

IV. **Closed-Loop Manual Operation:** With 0 V input signal, displacement of the PZTs can be set by a DC-offset potentiometer (not included) in the range of zero to nominal displacement. Only one unipolar stabilized voltage in the range of 12 to 30 VDC is required to operate the E-610. An integrated DC/DC converter generates the PZT operating voltage and all other voltages used internally. All inputs and outputs are via the male 32-pin rear connector. A matching female 32-pin connector, a LEMO ERA.00.250.CTL PZT operating voltage connector, and a LEMO ERA.0S.304.CLL sensor connector are included to interface with standard PI LVPZTs.

Computer Controlled Mode: Additional E-610 versions with integrated RS-232 interfaces for computer control are also available. See ordering information for model numbers and consult www.pi.ws or your PI Sales Engineer for availability and technical details.
Technical Data

Models	E-610.00, E-610.CO, E-610.LO, E-610.SO
Function | power amplifier & sensor/position servo-control of PZTs
Channels | 1
Amplifier Maximum output power | 14 W
Average output power | 6 W
Peak output current < 5 ms | 140 mA
Average output current > 5 ms | 60 mA
Current limitation | short-circuit proof
Voltage gain | 10 ±0.1
Polarity | positive
Control input voltage | -2 to +12 V
Output voltage | -20 to 120 V
DC-offset setting | 0 to 100 V at output, with external potentiometer (not included)
Input impedance | 100 kΩ
Input/output connector | 32-pin (male) on rear panel (DIN 41612/D)
Dimensions | one 7T slot wide, 3H high
Weight | 0.35 kg (E-610.00: 0.3 kg)
Operating voltage | 12 to 30 VDC, stabilized
Operating current | 2 A
Position Servo-Control (except E-610.00)
Sensor Types | strain gauge (E-610.S0); LVDT (E-610.L0), capacitive (E-610.CO)
Servo Characteristics | P-I (analog) + notch filter
Sensor Socket | LEMO ERA.06.304.CLL (included)
E-660
LVPZT Amplifiers

Ordering Information
E-660.00
LVPZT Amplifier
E-660.OE
LVPZT Amplifier Module, OEM Version

Custom Designs for Volume Buyers

Single-Channel PZT Driver
12 V Battery or P/S Operation
Output Voltage Range 5 to 100 V

The E-660.00 is a low-cost amplifier for low-voltage PZTs. It can output and sink a peak current of 20 mA and an average current of 10 mA. The E-660 is designed for static and low-level dynamic PZT applications. Because an operating current of only 150 mA @ 12 V is required, battery operation is possible.

E-660.OE is the OEM version of the E-660.00 amplifier. The OEM module does not provide manual controls. All inputs and outputs are via 8 header pins located on the bottom of the E-660.OE. The module is designed to be mounted on circuit boards. The electronics are fully enclosed in a metal case. The E-660.00 and E-660.OE can be operated in two ways:

I. Manual Operation: Output voltage can be set by a DC-offset potentiometer (not supplied with E-660.OE) in the range of 5 to 100 V.

II. External operation: Output voltage is controlled by an analog signal in the range of 0 to 10 V, applied to the BNC input (E-660.00). Multiplying by the gain factor of 10, an output voltage range of +5 to +100 V results. The DC-offset potentiometer adds a DC bias to the input, allowing continuous shifting of the input voltage range between 0 V to +10 V and -10 V to 0 V.

Technical Data

<table>
<thead>
<tr>
<th>Models</th>
<th>E-660.00</th>
<th>E-660.OE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Power amplifier</td>
<td>Power amplifier</td>
</tr>
<tr>
<td>Channels</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Maximum output power</td>
<td>2 W</td>
<td>2 W</td>
</tr>
<tr>
<td>Average output power</td>
<td>1 W</td>
<td>1 W</td>
</tr>
<tr>
<td>Peak output current < 5 ms</td>
<td>20 mA</td>
<td>20 mA</td>
</tr>
<tr>
<td>Average output current > 5 ms</td>
<td>10 mA</td>
<td>10 mA</td>
</tr>
<tr>
<td>Current limitation</td>
<td>Short-circuit proof</td>
<td>Short-circuit proof</td>
</tr>
<tr>
<td>Voltage gain</td>
<td>10 ±0.1</td>
<td>10 ±0.1</td>
</tr>
<tr>
<td>Polarity</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Control input voltage</td>
<td>0 to +10 V</td>
<td>0 to +10 V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>5 to 100 V</td>
<td>5 to 100 V</td>
</tr>
<tr>
<td>DC offset setting</td>
<td>5 to 100 V with 1-turn pot</td>
<td>-</td>
</tr>
<tr>
<td>Input impedance</td>
<td>100 kΩ</td>
<td>100 kΩ</td>
</tr>
<tr>
<td>Control input socket</td>
<td>BNC</td>
<td>header pins</td>
</tr>
<tr>
<td>PZT voltage output socket</td>
<td>LEMO ERA.00.250.CTL</td>
<td>header pins</td>
</tr>
<tr>
<td>Dimensions</td>
<td>150 x 195 x 75 mm</td>
<td>93 x 45 x 28 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>0.5 kg</td>
<td>0.25 kg</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>12 to 15 VDC, stabilized</td>
<td>12 to 15 VDC, stabilized</td>
</tr>
<tr>
<td>Max. Operating current</td>
<td>150 mA</td>
<td>150 mA</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to +50°C</td>
<td>0 to +50°C</td>
</tr>
<tr>
<td>Power supply</td>
<td>Not included (3.5 mm jack socket)</td>
<td>Not included</td>
</tr>
</tbody>
</table>

E-660, frequency response with various PZT loads.
Values shown are capacitance values are in µF, measured in actual PZT.
The E-461.00 is a low-cost amplifier for high-voltage PZTs. It can output a peak current of 0.5 mA and an average current of 0.3 mA. Because the unit requires an operating current of only 80 mA @ 12 V, battery operation is possible.

The E-461.OE is the OEM version of the E-461.00 amplifier. The OEM module does not provide manual controls. All input connections are via 6 header pins located on the bottom. The HV output is via a coaxial cable with LEMO connector (ERA.0A.250.CTL). The module is designed for mounting on circuit boards.

The electronics are fully enclosed in a metal case. The E-461.00 and E-461.OE can be operated in 2 ways:

I. Manual Operation: Output voltage can be set by a DC-offset potentiometer (not supplied with E-461.OE) in the range of -10 to -1000 V.

II. External operation: Output voltage is controlled by an analog signal in the range of 0 to 10 V, applied to the BNC input. Multiplying by the gain factor of -100, an output voltage range of -10 to -1000 V results. The DC-offset potentiometer adds a DC bias to the input, allowing continuous shifting of the input range between 0 V to +10 V and -10 V to 0 V.

The E-461.00 and E-461.OE are not equipped with active discharge circuitry but a 5 MΩ/3.9 nF RC network. Therefore, PZT discharge times will differ from charge times. If dynamic (> 1 Hz) PZT operation is required, please consider the E-463 or E-507 amplifiers.

Technical Data

<table>
<thead>
<tr>
<th>Models</th>
<th>E-461.00</th>
<th>E-461.OE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Power amplifier</td>
<td>Power amplifier</td>
</tr>
<tr>
<td>Channels</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Maximum output power</td>
<td>0.5 W</td>
<td>0.5 W</td>
</tr>
<tr>
<td>Average output power</td>
<td>0.3 W</td>
<td>0.3 W</td>
</tr>
<tr>
<td>Peak output current < 5 ms</td>
<td>0.5 mA</td>
<td>0.5 mA</td>
</tr>
<tr>
<td>Average output current > 5 ms</td>
<td>0.3 mA</td>
<td>0.3 mA</td>
</tr>
<tr>
<td>Current limitation</td>
<td>Short-circuit proof</td>
<td>Short-circuit proof</td>
</tr>
<tr>
<td>Voltage gain</td>
<td>-100 V to +100 V</td>
<td>-100 V to +100 V</td>
</tr>
<tr>
<td>Polarity</td>
<td>negative</td>
<td>negative</td>
</tr>
<tr>
<td>Control input voltage</td>
<td>0 to +10 V</td>
<td>0 to +5 V</td>
</tr>
<tr>
<td>Output voltage</td>
<td>-10 to -1000 V</td>
<td>-10 to -1000 V</td>
</tr>
<tr>
<td>DC-offset setting</td>
<td>-10 to -1000 V at output with 1-turn pot.</td>
<td>-10 to -1000 V at output with 1-turn pot.</td>
</tr>
<tr>
<td>Input impedance</td>
<td>10 kΩ</td>
<td>10 kΩ</td>
</tr>
<tr>
<td>Frequency response</td>
<td>Static and quasi static applications only</td>
<td>Static and quasi-static applications only</td>
</tr>
<tr>
<td>Control input socket</td>
<td>BNC (E-461.00 only)</td>
<td>Header pins</td>
</tr>
<tr>
<td>PZT voltage output socket</td>
<td>LEMO ERA.0A.250.CTL</td>
<td>LEMO ERA.0A.250.CTL</td>
</tr>
<tr>
<td>Dimensions</td>
<td>160 x 90 x 60 mm</td>
<td>67 x 41 x 20 mm</td>
</tr>
<tr>
<td>Weight</td>
<td>0.5 kg</td>
<td>0.25 kg</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>10 to 15 VDC, stabilized</td>
<td>10 to 15 VDC, stabilized</td>
</tr>
<tr>
<td>Max. operating current</td>
<td>80 mA</td>
<td>80 mA</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>0 to +60°C</td>
<td>0 to +60°C</td>
</tr>
<tr>
<td>Power supply</td>
<td>Not included (3.5 mm jack socket)</td>
<td>Not included</td>
</tr>
</tbody>
</table>

Ordering Information

E-461.00
HVPZT Amplifier

E-461.OE
HVPZT Amplifier Module, OEM Version

Custom Designs for Volume Buyers

www.piceramic.com
The E-420 series high-power amplifiers are specifically designed to drive high-capacitance PZT actuators. They can output and sink a peak current of 500 mA and an average current of 100 mA in a voltage range of -3 to -1100 V (positive or bipolar range, jumper selectable). OEM, 19” rackmount, bench-top, and two-channel versions are available, some with servo-control module and display (see Ordering Information for standard combinations).

Standard versions can be operated in two ways:

I. Manual operation:
The output voltage can be set by a 10-turn, DC-offset potentiometer in the range of -3 to -1000 Volts.

II. External operation:
The output voltage is controlled by an analog signal applied to the BNC input, ranging from 0 to 11 Volts. Multiplying by the gain factor of -100, an output voltage range of -3 to -1100 Volts results. The DC-offset potentiometer adds a DC bias to the input, allowing continuous shifting of the input range between 0 V to +10 V and -10 V to 0V.

See graph for frequency response with selected piezo actuators.

Upgrades

The E-471.00 version allows installation of several upgrade options for enhanced versatility (see Ordering Information).

<table>
<thead>
<tr>
<th>Models</th>
<th>E-470.00, E-471.00, E-420.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>power amplifier (servo-controller option for E-471)</td>
</tr>
<tr>
<td>Channels</td>
<td>1 (E-472: 2)</td>
</tr>
<tr>
<td>Maximum output power</td>
<td>500 W</td>
</tr>
<tr>
<td>Average output power</td>
<td>100 W</td>
</tr>
<tr>
<td>Peak output current > 50 ms:</td>
<td>500 mA</td>
</tr>
<tr>
<td>Average output current > 50 ms:</td>
<td>100 mA</td>
</tr>
<tr>
<td>Current limitation</td>
<td>short-circuit proof</td>
</tr>
<tr>
<td>Voltage gain</td>
<td>-100 ≤ +1, +100 ≤ +1 (selectable)</td>
</tr>
<tr>
<td>Polarity</td>
<td>Negative/positive/bipolar (jumper selectable)</td>
</tr>
<tr>
<td>Control input voltage</td>
<td>0 to +11 V, 0 to -11 V (jumper selectable)</td>
</tr>
<tr>
<td>Output voltage</td>
<td>-3 to -1100 V (-780 to +260, -550 to +550, -260 to +780, +3 to +1100V (jumper selectable))</td>
</tr>
<tr>
<td>DC-offset setting</td>
<td>+3 to +1100 V at output with 10-turn pot.</td>
</tr>
<tr>
<td>Input impedance</td>
<td>1 MΩ</td>
</tr>
<tr>
<td>Control input sockets</td>
<td>BNC</td>
</tr>
<tr>
<td>PZT voltage output sockets</td>
<td>LEMO ERA.0.A.250.CTL</td>
</tr>
<tr>
<td>Dimensions</td>
<td>235 x 158 x 288 mm (E-470); 450 x 158 x 288 mm (E-471, E-472); 215 x 123 x 185 mm (E-420)</td>
</tr>
<tr>
<td>Weight</td>
<td>5.2 kg (E-470); 7.6 kg (E-471); 10.1 kg (E-472); 2.5 kg (E-420)</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>90-120 / 220-264 VAC, 50-60 Hz</td>
</tr>
</tbody>
</table>

The E-420 high-power amplifier module provides peak power of 500 W and up to 1100 V output voltage.
Piezo Nanopositioning Stages
PI designs and manufactures the fastest and highest precision piezo nanopositioning and scanning systems in the world. PI Piezo Flexure Nanopositioners are available in 1 to 6 DOF versions.

Packaged / Preloaded Piezo Actuators
Packaged piezo actuators come in a variety of configurations, from the ultra-flat disk actuators to water-protected high-load designs for machining applications.

Micropositioning Stages & Actuators
PI offers a large range of high-precision MicroPositioning devices and systems for OEM and research. Our expertise spans from manual actuators to the unique IntelliStage™ translation stage with integrated controller, and the Hexapod 6D positioning systems.

High-Speed Piezoelectric Motors
PI/line™ Linear Piezo Motors are based on a novel solid-state ultrasonic piezoceramic drive. They are lightweight, low-profile and provide a number of features and advantages not available with conventional motors.

Notes
For more information on these and other PI product lines see the Physik Instrumente (PI) Nanopositioning catalog and website (www.pi.ws).
Advantages of Piezoelectric Actuators

Unlimited Resolution
A piezoelectric actuator can produce extremely fine position changes down to the sub-nanometer range. The smallest changes in operating voltage are converted into smooth movements. Motion is not influenced by stiction/friction or threshold voltages.

Large Force Generation
Piezoelectric actuators can generate a force of several 10,000 N. PI Ceramic offers units that can bear loads up to several tons and position within a range of more than 100 µm with sub-nanometer resolution.

Rapid Response
Piezoelectric actuators offer the fastest response time available. Microsecond time constants and acceleration rates of more than 10,000 g’s can be obtained.

No Magnetic Fields
Piezoelectric actuators are especially well-suited for applications where magnetic fields cannot be tolerated. For extreme requirements, PI Ceramic is able to deliver assemblies which have no measurable remnant magnetism.

Low Power Consumption
The piezoelectric effect directly converts electrical energy into motion, absorbing electrical energy during movement only. Static operation, even holding heavy loads, does not consume power.

No Wear and Tear
A piezoelectric actuator has neither gears nor rotating shafts. Its displacement is based on pure solid-state effects and exhibits no wear and tear. PI Ceramic has conducted endurance tests on actuators in which no change in performance was observed after several billion cycles.

Vacuum and Clean-Room Compatible
Piezoelectric actuators employ ceramic elements that do not need any lubricants and exhibit no wear or abrasion. This makes them clean-room compatible and ideally suited for ultra-high-vacuum applications.

Operation at Cryogenic Temperatures
The piezoelectric effect is based on electric fields and functions down to almost zero kelvin, albeit at reduced specifications.

Tube design
Design of a PZT stack actuator.
Parallel bimorph and serial bimorph.
PI Ceramic piezoelectric actuators offer today’s motion engineer and scientist a practical way to achieve extremely high positioning accuracy, shortest possible response times, best dynamic operation and largest forces in a wide variety of applications. Presently piezoelectric actuator based motion systems increasingly replace classical motion technologies—improving products in terms of miniaturization, precision and throughput. In addition, the unique features of piezoelectric actuators will trigger the development of motion equipment that could not even exist without this technology.

PI Ceramic, a member of the PI Group, offers the largest selection worldwide of research- and industrial-reliability piezoelectric actuators. In addition to the standard piezoelectric products presented in this short catalog, we focus on custom designs tailored to our customer’s requirements.

The highly vertically integrated structure of the PI Group allows control of each manufacturing step, beginning at the raw material up to finished NanoPositioning systems, including electronic drivers, amplifiers and controllers. This comprehensive development and manufacturing know-how of electromechanical components and systems is unique in the world.

Since the piezoelectric effect exhibited by natural monocristalline materials such as quartz, tourmaline, Rochelle salt, etc. is very small, polycrystalline piezoelectric ceramic materials, such as lead (plumbum) zirconate titanate (PZT), with improved properties have been developed. PZT ceramics are available in many variations and are by far the most widely used materials for piezoelectric actuator applications today.

Applications for Piezoelectric Actuators
- Optics and Photonics
- Precision Mechanics
- Life Sciences, Medicine, Biology
- Vibration Cancellation
- Adaptronics
- Mechanical Engineering
- Measuring Technologies
- Microelectronics
- Disk Drive
Below the so-called Curie temperature T_C (see Table 1) the ionic lattice structure in the PZT crystallites becomes distorted and asymmetric (with an axis of polarity) and, additionally, exhibits spontaneous polarization. One result is that the discrete PZT crystallites become piezoelectric. However, the statistical distribution of the grain orientations in the ceramic will cause the macroscopic behavior to be non-piezoelectric.

An additional property, the ferroelectric nature of the PZT material, will help to solve this problem. When an intense electric field is applied to the ceramic, the different lattice orientations of the individual ceramic grains can be permanently altered. As a result of this “poling process” the ceramic is accorded a net orientation of its internal, spontaneous polarization in the direction of the poling field and shows an overall piezoelectric effect. For some PZT ceramics, it is necessary to perform the poling process at elevated temperatures.

Table 1 shows the specifications of different PI Ceramic PZT piezoelectric materials. The types PIC 151 and PIC 255 are the PI Ceramic standard actuator materials which are used for the PICA-Stack and PICA-Power actuators. These materials show the highest piezoelectric deformation constants, d_{33}, d_{31}, and d_{15} (see Table 1) and, consequently, the largest induced strain values at comparable fields. These compositions incorporate all our long-term experience in piezoelectric actuator development, manufacturing and application.

Table 1: PI Ceramic Standard PZT Materials

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>PIC 151</th>
<th>PIC 155</th>
<th>PIC 255</th>
<th>PIC 181</th>
<th>PIC 241</th>
<th>PIC 300</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density ρ</td>
<td>g/cm3</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
<td>7.8</td>
</tr>
<tr>
<td>Curie Temperature T_C</td>
<td>°C</td>
<td>250</td>
<td>345</td>
<td>350</td>
<td>330</td>
<td>270</td>
<td>370</td>
</tr>
<tr>
<td>Relative Dielectric Permittivity $\varepsilon_{r,t}\varepsilon_0$</td>
<td></td>
<td>2400</td>
<td>1450</td>
<td>1750</td>
<td>1200</td>
<td>1500</td>
<td>1050</td>
</tr>
<tr>
<td>Dielectric Dissipation Factor $\tan\delta$</td>
<td>10$^{-3}$</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electromechanical Coupling Factor k_3</td>
<td></td>
<td>0.62</td>
<td>0.62</td>
<td>0.62</td>
<td>0.56</td>
<td>0.55</td>
<td>0.48</td>
</tr>
<tr>
<td>Mechanical Quality Factor Q_m</td>
<td></td>
<td>100</td>
<td>80</td>
<td>80</td>
<td>2000</td>
<td>1200</td>
<td>1400</td>
</tr>
<tr>
<td>Frequency Constant N_f</td>
<td>Hzm</td>
<td>1950</td>
<td>1960</td>
<td>2000</td>
<td>2270</td>
<td>2190</td>
<td>2350</td>
</tr>
<tr>
<td>N_f</td>
<td>Hzm</td>
<td>1500</td>
<td>1500</td>
<td>1420</td>
<td>1640</td>
<td>1590</td>
<td>1700</td>
</tr>
<tr>
<td>N_f</td>
<td>Hzm</td>
<td>1750</td>
<td>1780</td>
<td>2010</td>
<td>1550</td>
<td>1700</td>
<td></td>
</tr>
<tr>
<td>N_f</td>
<td>Hzm</td>
<td>1950</td>
<td>1990</td>
<td>2000</td>
<td>2110</td>
<td>2140</td>
<td>2100</td>
</tr>
<tr>
<td>Piezoelectric Deformation</td>
<td>pm/V</td>
<td>-210</td>
<td>-165</td>
<td>-180</td>
<td>-120</td>
<td>-130</td>
<td>-80</td>
</tr>
<tr>
<td>(Charge) Coefficient d_{33}</td>
<td>pm/V</td>
<td>500</td>
<td>360</td>
<td>400</td>
<td>285</td>
<td>290</td>
<td>155</td>
</tr>
<tr>
<td>Piezoelectric Voltage Coefficient g_p</td>
<td>103 V/m/N</td>
<td>-11.5</td>
<td>-12.9</td>
<td>-11.3</td>
<td>-11.2</td>
<td>-9.8</td>
<td>-9.5</td>
</tr>
<tr>
<td>Elastic Compliance Coefficient s_{11}</td>
<td>103 m/N</td>
<td>15.0</td>
<td>15.6</td>
<td>16.1</td>
<td>11.8</td>
<td>12.6</td>
<td>11.1</td>
</tr>
<tr>
<td>Elastic Stiffness Coefficient c_{11}</td>
<td>109 N/m2</td>
<td>18.0</td>
<td>19.7</td>
<td>20.7</td>
<td>14.2</td>
<td>14.3</td>
<td>11.8</td>
</tr>
<tr>
<td>Temperature Coefficient T_C</td>
<td>°C/mm3</td>
<td>10$^{-1}$</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

This data was measured according to EN50324 I/II.

PIC 151
PIC 151 is a modified lead zirconate titanate (PZT) ceramic with high permittivity, coupling factor and charge constant. It is thus well-suited for PICA-Stack actuators and bender applications. Due to the high coupling factor and the low mechanical quality factor it is also recommended for low frequency and pulsed ultrasonic applications.

PIC 255
PIC 255 is a modified lead zirconate titanate (PZT) with a high Curie temperature, coupling factor and charge constant. The material is optimized for actuator application under dynamic or high-temperature working conditions. Because of its high coercive field, PIC 255 can be used for bipolar-driving-mode applications as well as for PICA-Shear actuators. Due to its high coupling efficiency, low mechanical quality factor and low temperature coefficient, it is also well-suited for low-power ultrasonic transducers, non-resonant broadband devices, sensors for load and sound transducers and is preferred for vacuum applications.

PIC 252
PIC 252 is a low-sintering modification of PIC 255, especially used for multilayer actuators. It is recommended for dynamic and/or high-temperature operating conditions due to its high curie temperature and low permittivity. This material will replace the currently used ceramic type in the near future.
PICMA™ and PICA: Cofired and Stacked Piezoelectric Actuators

Two main types of piezo actuators are available: cofired PICMA™ actuators requiring about 120 volts for full motion, and glued PICA-Stack actuators, requiring up to 1000 volts for full extension. The maximum electrical field which can be recommended for reliable operation of PZT ceramics is on the order of 1 to 2 kV/mm. To keep the operating voltage within practical limits, actuators consist of thin layers of electroactive ceramic material which are electrically connected in parallel. The net positive displacement is the sum of the displacements of the individual layers. The thickness of the individual layers determines the maximum operating voltage of the actuator.

Glued PICA-Stack piezoelectric actuators consist of separate ceramic discs with a thickness of 0.2 to 1.0 mm. These values, which are limited by the manufacturing technology, result in nominal driving voltages of up to 1000 V. In contrast, PICMA™ actuators are manufactured using a cofiring technology. This advanced process allows for multilayer designs which have individual layer thicknesses of just 20 to 100 µm. Hence PICMA™ actuators require nominal voltages of only 40 to 200 V.

Both types of piezoelectric actuators can be used for many applications: PICMA™ actuators facilitate drive electronics design and can be produced at reasonable costs in standard sizes and large quantities. Due to its manufacturing technology, PICA-Stack actuators can be designed with larger cross-sections for high-load applications. They can easily lift weights of up to several tons. Additionally, the PICA-Stack technology is very flexible in terms of special actuator shapes and sizes.
For small electric driving signals the displacement ΔL of a bulk ceramic material sample can be calculated from the following equation:

(Equation 1)

$$\Delta L = S_j L_0 = d_{ij} E_i L_0$$

where:
- S_j: mechanical strain in direction j (strain is defined as relative length change, $\Delta L/L$) [dimensionless]
- L_0: material thickness in field direction [m]
- E_i: electrical field in direction i [V/m]
- d_{ij}: piezoelectric deformation coefficient [pm/V]

Table 2 illustrates the different piezoelectric actuator displacement modes for PZT ceramics. By convention, index 3 is always aligned in the poling direction of the material. The small-signal values of the relevant piezoelectric deformation coefficients d_{33}, d_{31}, and d_{15} for the different actuator materials can be found in Table 1.

The longitudinal mode is used for most linear actuators in this catalog. In this mode, the electric field, the poling direction as well as the mechanical strain or displacement, have the same orientation. Keep in mind that the longitudinal deformation is always accompanied by a transverse deformation. When driven with a positive voltage U_3, the material expands in the longitudinal direction while at the same time shrinking in the transverse direction, as can be seen from the material deformation figures in Table 1. Whether the actuator is of a longitudinal or transverse type depends only on the displacement which is used. The shear mode is different, because in it the electric field and the poling direction are perpendicular to each other. The PICA-Shear actuators use the shear displacement in the poling direction.

To get the displacements of the individual layers in a multilayer actuator to add while using the appropriate electrical contact configuration, the poling orientations of adjacent layers have to alternate (see Table 2).

Equation 1 is applicable for small electric signals only, because the piezoelectric deformation coefficients, d_{ij} for PZT ceramics show strong electric field dependency. In fact, the coefficient value can increase by a factor of 1.5 to 2 compared to the small-signal value in Table 1 when the nominal voltage of the actuator is applied. This increase leads to a very high large-signal deformation coefficient d_{15} of 1100 pm/V at an amplitude of 250 V for PICA-Shear actuators, which are made of PIC 255.
Stiffness

When calculating force generation, resonant frequency, system response, etc., piezo stiffness is an important parameter. In solid bodies stiffness depends on the Young’s modulus, the ratio of stress (force per unit area) to strain (change in length per unit length). It is generally described by the spring constant k_T, relating the influence of an external force to the dimensional change of the body.

This narrow definition does not apply for PZT ceramics because large- and small-signal conditions, static and dynamic operation, open and shorted electrodes must all be distinguished. The poling process of PZT ceramics leaves a remanent strain in the material which depends on the magnitude of polarization. The polarization is affected by both the drive voltage and external forces. When an external force is applied to poled PZT ceramics, the dimensional change depends on the stiffness of the ceramic material and the change of the remanent strain (caused by the polarization change). The equation $k_T = F/\Delta L$ is only valid for small forces and small signal conditions. For larger forces, an additional term describing the influence of the polarization changes, must be superimposed on stiffness (k_i).

Since PZT ceramics are active materials, they produce an electrical response (charge) when mechanically stressed (e.g., in dynamic operation). When the electric charge cannot be drained from the ceramics, it generates a counterforce to the mechanical stress. This is why a piezoelectric ceramic with open electrodes appears stiffer than one with shorted electrodes. With actuators (compound structures of different active and passive materials) the scenario is even more complicated.

The above discussion explains why the (dynamically measured) resonant frequency of a piezo actuator differs from the statically measured stiffness using the equation

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{k_i}{m_{eff}}}$$

Since stiffness values of piezo actuators are not constants they can only be used to estimate the behavior under certain conditions and to compare different piezoelectric actuators of one manufacturer.
Load Capacity

PI Ceramic actuators can withstand high pushing forces and carry loads to several tons. Even when loaded, the actuator will not lose any travel as long as the maximum load capacity is not exceeded. Load capacity and force generation must be distinguished.

Like any other actuator, a piezoelectric actuator is compressed when a force is applied. Two cases must be considered when operating piezoelectric actuators with a load:

a) The load remains constant during the motion process.

b) The load changes during the motion process.

Mechanical Considerations . . . (cont.)

Load Capacity

Case a, constant force

A mass is installed on the actuator which applies a force \(F = M \cdot g \) (\(M \): mass, \(g \): acceleration due to gravity). With constant force the zero point will be offset by an amount \(\Delta L_0 \approx F / k_T \), where \(k_T \) equals the stiffness of the actuator. If this force is within the specified load limit, full displacement can be obtained at full operating voltage.

Changing Force

(Force = Function of \(\Delta L \), e.g. a spring load): Displacement is reduced

For operation with spring loads different rules apply. The “spring” could be an I-beam or a single fiber, each with its characteristic stiffness or spring constant. Part of the displacement generated by the piezo effect is lost due to the elasticity of the piezo element. The total available displacement can be related to the spring stiffness by the following equations:

(Equation 3)

\[
\Delta L \approx \Delta L_0 \left(\frac{k_0}{k_1 + k_S} \right)
\]

Maximum displacement of a piezo actuator acting against a spring load.

(Equation 4)

\[
\Delta L_n \approx \Delta L_0 \left(1 - \frac{k_0}{k_T + k_S} \right)
\]

Maximum loss of displacement due to external spring force. In the case where the spring stiffness \(k_S \) is \(\infty \) (infinitely rigid restraint) the actuator only acts as a force generator.

Case b, variable force

Zero point is offset with constant force (mass).
Force Generation

In most applications, piezoelectric actuators are used to produce displacement. If used in a restraint, they can generate forces. Force generation is always coupled with a reduction in displacement. The maximum force (blocked force) a piezo actuator can generate depends on its stiffness and maximum displacement.

(Equation 5)
\[F_{\text{max}} = k_a \cdot \Delta L_0 \]

Maximum force that can be generated in an infinitely rigid restraint (infinite spring constant). At maximum force generation, displacement is zero.

where:
- \(\Delta L_i \) = max. nominal displacement without external force or restraint [m]
- \(k_a \) = actuator stiffness [N/m]

In actual applications the load spring constant can be larger or smaller than the actuator spring constant. The force \(F_{\text{max eff}} \) generated by the actuator working against an elastic restraint is:

(Equation 6)
\[F_{\text{max eff}} = k_s \cdot \Delta L_0 \left(1 - \frac{k_s}{k_a + k_s}\right) \]

Effective force a piezo actuator can generate in a yielding restraint

where:
- \(\Delta L_i \) = max. nominal displacement (without external force or restraint) [m]
- \(k_a \) = actuator stiffness [N/m]
- \(k_s \) = stiffness of external spring [N/m]

Force generation vs. displacement of a piezo actuator (displacement 30 µm, stiffness 200 N/µm) at various operating voltages. The points where the dashed lines (external spring curves) intersect the actuator force/displacement curves determine the force and displacement for a given setup with an external spring. Maximum work can be done when the stiffness of the actuator and external spring are identical.
How Fast Can a Piezo Actuator Expand?

Fast response is one of the desirable features of piezo actuators. A rapid drive-voltage change results in a rapid position change. This property is necessary in applications such as switching of valves/shutters, generation of shockwaves, vibration cancellation systems, etc. A piezo actuator can reach its nominal displacement in approximately 1/3 of the period of the resonant frequency.

\[
T_{\text{min}} = \frac{1}{3f_0}
\]

(Rise times on the order of microseconds and accelerations of more than 10,000 g’s are possible.

Resonant Frequency

Piezoelectric actuators are not designed to be driven at resonant frequency at the nominal voltage and load. This will result in high dynamic forces which might damage the structural integrity of the ceramic material (see Handling Precautions p. 50).

In general, the resonant frequency of any spring/mass system is a function of its stiffness and effective mass. The resonant frequency given in the technical data tables always refers to the unloaded actuators (fixed at one end).

\[
f_0 = \left(\frac{1}{2\pi}\right)\sqrt{\frac{k}{m_{\text{eff}}}}
\]

(Equation 8)

Resonant frequency of an ideal spring/mass system

where:

- \(f_0\) = resonant frequency [Hz]
- \(k\) = actuator stiffness [N/m]
- \(m_{\text{eff}}\) = effective mass (about 1/3 of the mass of the ceramic stack plus any installed end pieces) [kg]

Resonant frequencies of industrial-reliability piezoelectric actuators range from 100 kHz for actuators with a total travel of a few microns to a few kilohertz for actuators with a travel of more than 100 microns.

Response of an lever-amplified PZT actuator (low resonant frequency) to a rapid drive-voltage change. Driving techniques such as InputShaping® eliminate self generated ringing and allow settling in one period of the resonant frequency.
Piezoelectric actuators operate as capacitive loads. The leakage current values of PI Ceramic actuators are very low, because the effective large-signal volume resistivity of the materials used is very large. Therefore, the actuators consume almost no energy in static applications and consequently they produce virtually no heat.

In dynamic applications, the power consumption increases linearly with the frequency and the actuator capacitance. Note that actuator capacitance varies with respect to the applied voltage.

Close contact with the manufacturer will assure that the right actuator design is chosen for your application!

Hysteresis and Creep

The displacement hysteresis and creep in piezoelectric actuators can either be completely eliminated by closed-loop operation, or significantly reduced by advanced open-loop driving techniques. Open-loop piezoelectric actuators exhibit hysteresis in their dielectric and electromechanical large signal-characteristics. This hysteresis is mainly caused by microscopic ferroelectric polarization effects and is thus inherent to the materials used.

Hysteresis increases with the electric field or voltage amplitude with which the actuator is driven. The “split” in the voltage-displacement curves (see figure “Hysteresis curves”) typically starts at 2% for very small signals and reaches its maximum on the order of 10% to 15% at nominal voltage. For shear actuators these values can be even higher.

The same material mechanisms are responsible for the creep phenomena in piezoelectric actuators. Driven by a step signal, the actuator will follow the increasing voltage amplitude very closely, but it will continue to change in dimension slowly afterwards. The creep rate decreases logarithmically with time. The overall behavior is described by the following equation:

\[
\Delta L(t) = \Delta L_{0.1} \cdot \left[1 + \gamma \cdot \log \left(\frac{t}{0.1}\right)\right]
\]

where:
- \(\Delta L(t)\) ... displacement as a function of time [m]
- \(\Delta L_{0.1}\) ... displacement at 0.1 seconds after the voltage step is complete [m]
- \(\gamma\) ... creep factor, dependent on the properties of the actuator (on the order of 0.01 to 0.02)

Again, the creep of the actuator can be completely eliminated by closed-loop operation.

Actuator Self-Heating

When a piezoelectric actuator is driven by an AC voltage, the apparent electric power consists primarily of reactive power, because of the capacitive nature of the actuator. Even for small electric signals, however, the dielectric loss factor, \(\tan \delta\)—the relation between true power and reactive power—is on the order of 2% for actuators made of PZT ceramics. When the signal increases up to the peak-to-peak value corresponding to the nominal voltage, the loss factor becomes larger as well. It can increase up to 12% to 15% for longitudinal actuators or even more for shear actuators. The dielectric loss is closely related to the hysteresis. The dependency from the applied electric field is one of the most important facts for many parameters. When considering the accompanying quadratic increase of the power with the field, and, additionally, the increase in actuator capacitance with field by a factor of 1.5 to 2, self-heating effects can become significant during cycling with higher repetition rates at higher fields. Besides altering the performance specifications, this self-heating effect can possibly destroy the actuator, should the temperature increase above the allowed maximum.

Because the actual maximum temperature increase inside the actuator depends on several factors like thermal coupling of the actuator to its mechanical environment, the geometry of the actuator itself, or whether it is driven with forced convection or not, there is no general rule for the maximum driving power of a specific actuator.

Close contact with the manufacturer will help you to find a reliable solution for your application problem.
Piezoelectric actuators have no “stick slip” effect and therefore offer theoretically unlimited resolution. In practice, actual resolution can be limited by a number of factors such as driving amplifier noise, sensor and control electronics quality, which may exhibit noise and sensitivity to EMI, as well as mechanical parameters such as mounting precision, preloading, guiding and mechanical amplification mechanisms.

Piezoelectric actuators can be operated in open-loop and closed-loop modes. In open-loop, displacement roughly corresponds to the drive voltage. This mode is ideal when the absolute position accuracy is not critical. Open-loop piezoelectric actuators exhibit hysteresis and creep behavior, like other open-loop positioning systems.

Position servo-control eliminates nonlinear behavior of PZT ceramics and is the key to highly repeatable motion.

PI offers the largest selection of closed-loop piezo mechanisms and control electronics worldwide. The advantages of position servo-control are:

- Very good linearity, stability, repeatability and accuracy
- Automatic compensation for varying loads or forces
- Virtually infinite stiffness (within load limits)
- Elimination of hysteresis and creep effects
The lifetime of a piezoelectric actuator is not limited by wear and tear. All PI Ceramic piezo actuators are specifically designed for high-duty-cycle applications. All materials used are matched for robustness and lifetime. Endurance tests on PI Ceramic actuators prove consistent performance, even after billions (1,000,000,000) of cycles. There is no generic equation to determine the lifetime because of the many parameters such as temperature, humidity, voltage, acceleration, load, operating frequency, insulation materials, etc. which have an influence.

PICMA™-type actuators have advantages over other piezo actuators, especially in humid environments. Their monolithic, ceramic-insulated design blocks the diffusion of water molecules into the insulation layer, the major cause of dielectric breakdown.

PI Ceramic invests considerable energy in investigating and continually improving actuator lifetime. The design of the piezoelectric actuators in this catalog reflect several decades of experience in with thousands of industrial piezo actuator applications. Another result of this experience are the “Handling Precautions” in the following section.

Please contact your PI sales & application engineer for further information on lifetime and handling issues.
Handling Precautions

Piezoelectric actuators must be handled with care because the internal ceramic materials as well as ceramic end-plates are fragile. Do not use metal tools for actuator handling. Do not scratch the coating on the side surfaces.

Besides these general instructions the following precautions have to be considered during handling of PI Ceramic piezoelectric actuators:

1. Piezoelectric stack actuators without axial preload are sensitive to pulling forces. A preload of half of the blocking force is generally recommended (see data tables p. 13 to p. 27). This recommendation is also valid for PICA-Shear actuators in axial direction, perpendicular to the shear displacement directions.

2. Piezoelectric stack actuators may be stressed in the axial direction only. The applied force must be centered very well. Tilting and shearing forces, which can also be induced by parallelism errors of the endplates, have to be avoided because they will damage the actuator. This can be ensured by the use of ball tips, flexible tips, adequate guiding mechanisms etc. An exception to this requirement is made for the PICA-Shear actuators, because they operate in the shear direction. Do not exceed the maximum shear force specifications for these actuators.

3. Piezoelectric stack actuators have to be mounted by gluing them between even metal or ceramic surfaces by a cold or hot curing epoxy, respectively. Ground surfaces are preferred. Please, do not exceed the specified working temperature range of the actuator during curing.

4. The environment of all actuators should be as dry as possible. While PICMA™ actuators are guarded against humidity by their ceramic coating, other actuators must be protected by other measures (hermetic sealing, dry air flow, etc.).
The combination of long-term high electric DC fields and high relative humidity values should be avoided with all piezoelectric actuators. The electric field attracts the water molecules or hydroxy ions from the environment to the surface of the stack and leads to a permanent increase in its leakage current. This can finally result in damage to the actuator. There is no polymer coating which can avoid the forced penetration of these molecules.

5. It is important to short-circuit the piezoelectric stack actuators during any handling operation. The resulting loads will induce charges on the stack electrodes which might result in high electric fields if the leads are not shorted:
 a) changing temperatures, for example during curing or soldering processes, induces charges due to the pyroelectric effect
 b) changing mechanical loads, for example during preload application, induces charges due to the direct piezoelectric effect

5. Should the stack become charged, rapid discharging—especially without a preload—might damage the stack. Therefore, it is appropriate to use a resistor for discharging after any mistreatment. PI Ceramic delivers PICA-Stack piezoelectric actuators with a shorting clamp. We recommend the use of gloves and safety glasses during handling.

6. The lateral (side) surfaces of PICMA™ and PICA-Stack actuators are not, or not fully, electrically insulated to allow a more compact design and integration of the stack in the final assembly by the customer. Therefore, the customer is responsible for designing in the required separation or suitable insulating materials, like polyimide foil or PTFE tape, to insulate the stack from its surrounding.

7. Prevent any contamination of the stack surfaces with conductive or corrosive substances. Cleaning of the stacks should be done with isopropanol only. Do not use acetone. Avoid excessive ultrasonic cleaning at higher temperatures.
"Long-term business relationships, reliability, open and friendly communication with customers and suppliers are of the essence for PI Ceramic and all members of the worldwide PI group and far more important than short-term gain."

Dr. Karl Spanner, President

Headquarters

GERMANY

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Tel.</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physik Instrumente (PI) GmbH & Co. KG</td>
<td>Auf der Römerstrasse 1, 76228 Karlsruhe, Germany</td>
<td>+49 721 4846-0</td>
<td>+49 721 4846-100</td>
<td>info@pi.ws · www.pi.ws</td>
<td></td>
</tr>
<tr>
<td>PI Ceramic GmbH</td>
<td>Lindenstrasse 07589 Lederhose, Germany</td>
<td>+49 36604 882-0</td>
<td>+49 36604 882-25</td>
<td>info@piceramic.com</td>
<td>www.piceramic.com</td>
</tr>
</tbody>
</table>

Subsidiaries

USA

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Tel.</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI (Physik Instrumente) L.P. USA East, Canada</td>
<td>16 Albert Str., Auburn, MA 01501</td>
<td>+1 508 8323456</td>
<td>+1 508 8320506</td>
<td>info@pi-usa.us</td>
<td>www.pi-usa.us</td>
</tr>
<tr>
<td>PI (Physik Instrumente) L.P. USA West, Mexico</td>
<td>1342 Bell Avenue, Suite 3A, Tustin, CA 92780</td>
<td>+1 714 8509305</td>
<td>+1 714 8509307</td>
<td>info@pi-usa.us</td>
<td>www.pi-usa.us</td>
</tr>
</tbody>
</table>

JAPAN

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Tel.</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI-Japan Co., Ltd.</td>
<td>2-38-5 Akebono-cho, Tachikawa-shi, Tokyo 190-0012</td>
<td>+81 42 5267300</td>
<td>+81 42 5267301</td>
<td>info@pi-polytec.co.jp</td>
<td></td>
</tr>
<tr>
<td>PI-Japan Co., Ltd.</td>
<td>Hanahara Dai-ni-Building #703, 4-11-27 Nishinakajima, Yodogawa-ku, Osaka-shi, Osaka 532-0011</td>
<td>+81 6 63045605</td>
<td>+81 6 63045606</td>
<td>info@pi-polytec.co.jp</td>
<td></td>
</tr>
</tbody>
</table>

GREAT BRITAIN

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Tel.</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda Photometrics Ltd.</td>
<td>Lambda House, Batford Mill, Harpenden, Hertfordshire AL5 5BZ</td>
<td>+44 1582 764334</td>
<td>+44 1582 712084</td>
<td>info@lambdaphoto.co.uk</td>
<td>www.lambdaphoto.co.uk</td>
</tr>
</tbody>
</table>

FRANCE

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Tel.</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polytec PI S.A.</td>
<td>32 rue Delizy, F-93694 Pantin Cedex</td>
<td>+33 1 48103930</td>
<td>+33 1 48100803</td>
<td>pi.phot@polytec-pi.fr</td>
<td>www.polytec-pi.fr</td>
</tr>
</tbody>
</table>

ITALY

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Tel.</th>
<th>Fax</th>
<th>Email</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physik Instrumente (PI) S.r.l.</td>
<td>Via E. De Amicis, 2, I-20091 Bresso (MI)</td>
<td>+39 02 66501101</td>
<td>+39 02 66501456</td>
<td>info@pioplineline.it</td>
<td>www.pioplineline.it</td>
</tr>
</tbody>
</table>