

DuraAct™— Piezoelectric Patch Transducers for Industry and Research

1

Key Technologies Under One Roof: a Plus for Our Customers

- State-of-the-Art Piezo Components, Ultrasonic Transducers, Piezo Actuators and Piezo-System Solutions
- Design & Manufacture of High-Reliability Components for the Key Markets of Our Time
- Custom and Standard Solutions—Highly Flexible Processing Ensures Rapid Delivery
- Custom Designs—All Key Technologies and Equipment In-House
- ISO 9001-2000 Quality Certified since 1997

Ultra-High-Precision Technology Years Ahead of Its Time

PI has a strategy of vertical integration with all key technologies developed and maintained in the company. Direct control over every step from conception to shipment permits optimizing quality and cost. As a customer, you, too, can profit from our long experience in controlling and measuring motion at the nanometer level. PI can react quickly to development and production needs of OEM customers-even for highly complex custom products and subassemblies.

Cooperation

DuraAct[™] patch transducers are based on a patented development by the German Aerospace Center (DLR). PI Ceramic (PIC) produces the piezoceramic elements and handles all sales under an exclusive agreement, while INVENT GmbH puts together the transducers. PI Ceramic (PIC) is the piezoceramic division of Physik Instrumente (PI), the worldleading manufacturer of ultrahigh-precision piezo nanopositioning systems. Based on knowledge and expertise gained in more than 40 years of continuous research and manufacturing of piezoelectric materials and components, PI Ceramic is a world-class supplier of high-performance piezoelectric actuator and transducer components and subassemblies.

THE D

Research for Industry

INVENT GmbH is a 1996 spinoff from the DLR (German Aerospace Center) Institute of Structural Mechanics in Braunschweig. Now an established partner for the aerospace industry, INVENT offers qualified processes for planning, design, engineering and manufacturing—the fundamentals of successful product development.

INVENT GmbH has earned renown as engineering specialist for composite fiber technologies. The company develops structural components, applying their expertise in fields ranging from structural analysis, construction methods to series production. Another major area of activity is research and development. There, the focus is on material and process engineering, including finishing and coating of composite fiber structures. The quality management system at INVENT has been DIN EN 9100 certified since 2005.

Adaptronics—Industrial Applications of Tomorrow

The development of self-correcting, adaptive systems is receiving more and more attention in modern industrial research. Structures using "smart materials" which integrate sensor and actuator functions are taking on growing importance in this field. These systems are designed to detect and react to changes in their operating environment, like impact, pressure or bending forces. With a long history as adaptive materials, piezo actuators have been especially popular for the monitoring and active damping of high-frequency vibration. The novel DuraAct[™] patch transducers now offer a compact solution in this area.

Applied directly to a substrate, or used as part of the structure itself, DuraAct[™] patch tranducers can detect and produce vibrations or contour deformations at the source, inside the structure. The magnitude of usable deflection depends strongly on the substrate properties, and extends into the millimeter range.

Piezo-Electric All-Rounder— DuraAct™ Patch Tranducers

Piezoelectric components like the DuraAct[™] patch transducer transform electrical to mechanical energy and vice versa. Possible applications are in high-precision bender actuators, high-dynamics sensors or as power sources.

DuraAct[™] patch transducers are extremely compact units based on a thin piezoceramic foil between two conductive films, all embedded in a ductile composite-polymer structure. In this way, the brittle piezoceramic is mechanically prestressed and electrically insulated, which makes the transducers so robust that they can be applied on curved surfaces with a bending radius as low as 20 mm. The patch transducers are glued to the surface and can be used for various purposes.

Even in high-dynamics applications, the rugged design ensures reliability, high resistance to damage and a lifetime well over 10⁹ cycles. Wear and failure rates are low, as the solid-state actuators contain no moving parts.

DuraAct[™] patch transducers tolerate bending radii as low as 20 mm (³/₄ in.)

Miniature Electric Generator for Autonomous Systems

DuraAct[™] patch transducers can extract electric power from mechanical vibrations of up to several kilohertz, thus acting as energy harvesting devices. The power, in the milliwatt range, can supply miniature electronics like LEDs, sensors or mini RF transmitters for remote data transfer.

Custom Versions for Any Application

DuraAct[™] technology allows high flexibility in actuator design. This means that DuraAct[™] is also ideally suited for research and prototyping. In addition to the range of standard designs, highly individualized structural shapes can be realized to meet different requirements of geometry, flexibility, stiffness or operating temperature.

nh II.

Standard DuraAct[™] patch transducers consist of one piezoceramic layer only. For special applications, multilayer devices can be made available. In an actuator, multiple layers result in higher force generation with the same operating voltage. If the layers are wired separately, both sensor and actuator functionality can be used simultaneously.

The piezoelectric transducers can be designed to fit the appli-

cation exactly, including even transducers with arrays of multiple ceramic elements. Such custom products can be produced very efficiently, even in low quantities.

Tailored Control Electronics

Depending on the application, different demands are made on the electronics. To operate a high-precision, high-dynamics positioner, a low-noise, broadband amplifier is required. Active vibration damping requires fast servo-control with bandwidth sufficient for closecoupling the generated force to the structural mass to be damped. Pl offers special, high-resolution amplifier modules for DuraAct[™] patch transducers, and can always create custom versions to meet special requirements.

DuraAct[™] Patch Transducers—Features and Advantages

Application Examples Sensor Mode

- Vibration damping applications: good results can be achieved by combining a piezoelectric sensor with a servo-controller and having the sensor signal control an (external) damping mechanism.
- Structural Health Monitoring (SHM): DuraAct[™] patch transducers can be used to monitor the functional and structural integrity; the patch transducers are either part of the structure itself, or embedded within it.
- Fast switching: DuraAct[™] patch transducers provide fast response and long lifetime and are ideal actuators for these applications.

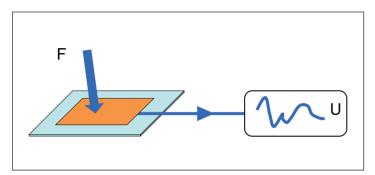


Fig. 1a: Classical application of the direct piezo effect. Minute deformations of the substrate cause displacements in the DuraAct[™] patch transducer and produce an electric current proportional to the motion. DuraAct[™] transducers can detect deformations—like those caused by bending strain or pressure—very precisely, even at high frequencies.

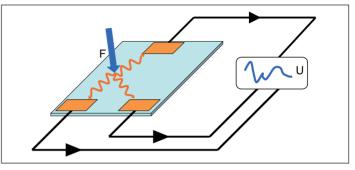


Fig. 1b: The same operating mode can be used with an array of several modules.

Actuator Mode

DuraAct[™] patch transducers feature a very high bandwidth. In combination with suitable electronics (e.g. E-413.D2 from PI) they can be used as highdynamics positioners with submicron precision.

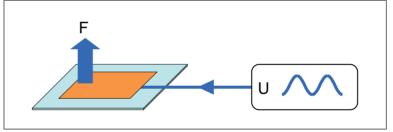


Fig. 2: In actuator mode, DuraAct[™] patch transducers use the inverse piezo effect: they contract when voltage is applied. Affixed to a substrate material, a DuraAct[™] patch transducer acts as a bender

Structural Health Monitoring (SHM)—Damage Diagnosis

Whole areas can be surveyed with an array of multiple modules attached to various points on the surface. Active monitoring, where some transducers are used as actuators while the others detect the waves they generate, is also possible. Faults in the structural material, like microcracks, are detected by comparing the signals with those from an undamaged system.

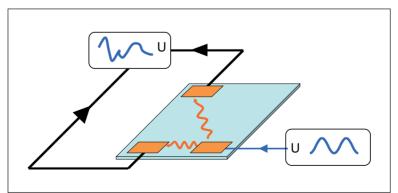


Fig. 3: Design principle for a health monitoring system: one DuraAct[™] patch transducer is controlled by an electronic amplifier (actuator functionality) and induces vibrations in the substrate. An array of transducers detects the vibrations and transfers the signals to suitable control electronics. Comparison with the signal pattern from an undamaged system gives information concerning the condition of the substrate.

Application Examples (cont.) Adaptive Systems Use Both Sensors and Actuators

■ Active Vibration Damping: A DuraAct[™] patch transducer is used as high-precision sensor and high-performance actuator, simultaneously detecting and damping or eliminating undesirable vibrations in, for example, rotating components. The DuraAct[™] sensor signal may be used as power supply for the same module, where it is fed back in with a phase shift. Multilayer ceramic designs make for higher efficiency.

Adaptronics

The use in adaptive structures exploits both the sensor and actuator functionality of the DuraAct[™] patch transducer. As smart materials, they can adapt to varying environmental conditions like impact, bending or pressure. Adaptive materials are used in particular for vibration reduction in vehicles, and their use in mechanical engineering is growing.

Energy Harvesting

■ DuraAct[™] patch transducers can provide power for low-power electronics like sensors, making the development of autonomous systems possible. A special branch of Structural Health Monitoring (SHM) is Wireless Health Monitoring. Here, a DuraAct[™] patch transducer can serve simultaneously as shape-control sensor and supply energy to a radio transmitter for remote data transfer. ■ DuraAct[™] patch transducers may replace other power supply solutions in existing applications.

Profile or shape control: The

the actuator function to

range.

sensor functionality is used

to detect a deformation, and

counteract it. The resulting

shape control is highly pre-

cise, down to the submicron

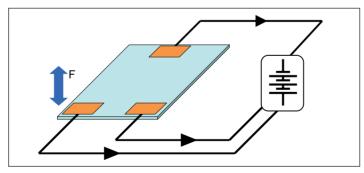


Fig. 4: The ability of DuraAct[™] transducers to convert mechanical to electrical energy makes them ideal for satisfying power requirements of low-power electronics, and makes possible construction of energy-autonomous systems

Selection Guide

DuraAct[™] Patch Transducers

Model	Dimensions (I x w x d) [mm]	Mass [g]	Active Area [cm²]	Capacitance [nF]	Supply Voltage (min/max) [V]	Lateral Contraction/ Voltage [(µm/m)/V]	Free Lateral Contraction S ₀ [μm/m]	Blocking Force F _B [N]	Young's Modulus [GPa]
P-876.A11	61 x 35 x 0.4	2.1	15	150	-50 to 200	1.6	450	90	16.4
P-876.A12	61 x 35 x 0.5	3.5	15	90	-100 to 400	1.3	650	265	23.3
P-876.A15	61 x 35 x 0.8	7.2	15	45	-250 to 1000	0.64	800	775	34.7

Coming Soon

Model	Dimensions (I x w x d) [mm]	Mass [g]	Active Area [cm²]	Capacitance [nF]	Supply Voltage (min/max) [V]	Lateral Contraction/ Voltage [(µm/m)/V]	Free Lateral Contraction S ₀ [µm/m]	Blocking Force F _B [N]	Young's Modulus [GPa]
P-876.A22	113 x 35 x 0.5	6.5	30	180	-100 to 400	1.3	650	265	23.3
P-876.A42	113 x 67 x 0.5	12.5	60	360	-100 to 400	1.3	650	527	24.2
P-876.A25	113 x 35 x 0.8	13.5	30	90	-250 to 1000	0.64	800	775	34.7
P-876.A45	113 x 67 x 0.8	27.0	60	180	-250 to 1000	0.64	800	1546	36.1
P-876.B12	61 x 55 x 0.5	5.5	25	150	-100 to 400	1.3	650	438	24.5
P-876.B22	113 x 55 x 0.5	10.0	50	300	-100 to 400	1.3	650	438	24.5
P-876.B42	113 x 107 x 0.5	20.0	100	600	-100 to 400	1.3	650	873	25.1
P-876.B15	61 x 55 x 0.8	11.5	25	75	-250 to 1000	0.64	800	1290	36.6
P-876.B25	113 x 55 x 0.8	21.5	50	150	-250 to 1000	0.64	800	1290	36.6
P-876.B45	113 x 107 x 0.8	43.0	100	300	-250 to 1000	0.64	800	2570	37.5
P-876.C12	81 x 30 x 0.5	4.0	17.5	10.5	-100 to 400	1.3	650	220	22.7
P-876.C22	153 x 30 x 0.5	7.5	35	210	-100 to 400	1.3	650	220	22.7
P-876.C42	153 x 57 x 0.5	15.0	70	420	-100 to 400	1.3	650	440	23.8
P-876.C15	81 x 30 x 0.8	8.2	17.5	53	-250 to 1000	0.64	800	650	33.8
P-876.C25	153 x 30 x 0.8	16.0	35	105	-250 to 1000	0.64	800	650	33.8
P-876.C45	153 x 57 x 0.8	31.5	70	210	-250 to 1000	0.64	800	1290	35.4
P-876.SP1	27 x 15 x 0.5	0.5	0.8	4.75	-	-	-	-	-

Custom Transducer Shapes

The modular design of the DuraAct[™] technology opens a wide range of optimization possibilities concerning the following features:

- Transducer geometry
- Flexibility and bending
- Operating temperature
- Insulating material
- Electrodes, shape and material
- Connection points, shape and material

Moving the NanoWorld | www.pi.ws

DuraAct™ Piezoelectric Patch Transducers

- Actuator, Sensor or Energy Source
- Highly Formable Ceramics
- Can be Applied to Curved Surfaces
- Customized Solutions on Request
- Cost-Effective

P-876 DuraAct[™] patch transducers offer the functionality of piezoceramic materials as sensors and actuators as well as for electrical charge generation and storage. Used as bender actuators, they allow high deflections of up to 0.8 mm with high force and high precision. Other possible operation modes of DuraAct[™] transducers are as high-dynamics sensors (e.g. for structural health monitoring) or for energy harvesting.

Application Examples

- High-dynamics actuators
- Adaptive systems
- Vibration and noise cancellation
- Deformation control and stabilization
- Damage monitoring
- Energy harvesting

Integration into Adaptive Systems

With their compact design, DuraAct[™] transducers can be applied to structure areas where deformations are to be generated or detected. For this purpose the transducers can be affixed to the surfaces of structures or integrated as structural elements themselves. Whole areas can be monitored effectively by applying an array of several modules to a surface.

DuraAct[™] patch transducers are ideally suited for active and adaptive systems. Embedded in a servo-control loop, they can reduce vibrations and control structures in the nanometer range.

Robust and Cost-Effective Design for Industrial Applications

The laminated design with piezoceramic plate and polymers provide a mechanically preloaded and electrically insulated device for easy handling. P-876 patch transducers feature a rugged design with the mechanical stability of a structural material.

Energy Harvesting: Self-Sustaining Systems in a Small Package

One possible application of DuraAct[™] patch transducers is in the field of energy harvesting. Transformation of mechanical vibrations of up to some kilohertz into the corresponding potential difference can yield electrical power in the milliwatt range. This power can supply miniature electronic devices like diodes, sensors or even radio transmitters for remote data control.

DuraAct[™] transducers can be offered in highly customized versions:

Ordering Information

P-876.A11 DuraAct[™] Patch Transducer, 61 x 35 x 0.4 mm

P-876.A12 DuraAct[™] Patch Transducer, 61 x 35 x 0.5 mm

P-876.A15 DuraAct[™] Patch Transducer, 61 x 35 x 0.8 mm

Ask for custom designs!

- Flexible choice of dimensions
- Flexible choice of thickness and bending properties
- Flexible choice of piezoceramic materials and operating temperature
- Various electrical connection designs
- Combining sensor and actuator functions (multiple ceramic layers)

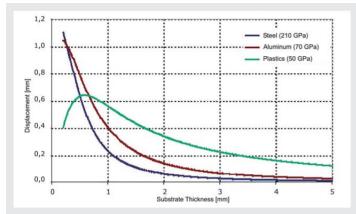
8

This data sheet is superseded by any new

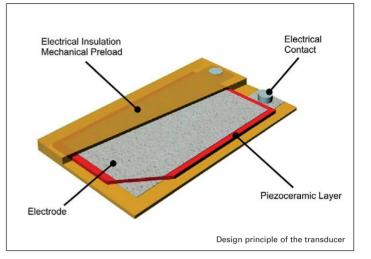
R1 07/10/08.

download at www.pi.ws.

Subject to change without notice.


release is available for

The newest


elease.

© PI 1998-2007.

Deflection of a bending transducer as a function of the substrate thickness for different materials. A bending transducer consists of a substrate with a P-876 actuator (here: P-876.A15) glued to one side. A contraction of the actuator effects a deflection W

Technical Data

	P-876.A11	P-876.A12	P-876.A15	Tolerances	
Operating voltage	-50 to +200 V	-100 to +400 V	-250 to +1000 V		
Motion and positioning					
Lateral contraction, open-loop	400 μm/m 1.6 μm/(H/m/V)	650 μm/m 1.3 μm/(H/m/V)	800 μm/m 0.64 μm/(H/m/V)	min.	
Mechanical properties					
Holding force	90 N	265 N	775 N		
Length	61 mm	61 mm	61 mm	±0.5 mm	
Width	35 mm	35 mm	35 mm	±0.5 mm	
Thickness	0.4 mm	0.5 mm	0.8 mm	±0.5 mm	
Bending radius	12 mm	20 mm	70 mm	max.	
Drive properties					
Piezo ceramic type	PIC 252 Layer thickness: 100 μm	PIC 255 Layer thickness: 200 μm	PIC 255 Layer thickness: 500 μm		
Electrical capacitance	150 nF	90 nF	45 nF	±20 %	
Miscellaneous					
Operating temperature range	-20 to +150 (180) °C	-20 to +150 (180) °C	-20 to +150 (180) °C		
Mass	2.1 g	3.5 g	7.2 g	±5%	
Voltage connection	Solder pads	Solder pads	Solder pads		
Recommended controller/driver	E-413.D2	E-413.D2	E-508		

E-413

Compact Piezo Amplifier for DuraAct[™] Patch Transducers and PICA[™] Shear Piezo Actuators

Peak Power to 50 W

- OEM Module / Bench-Top for PICA[™] Shear Actuators
- OEM Module for DuraAct[™] Piezoelectric Patch Transducers

amplifier board for bipolar PZTs. Three versions are available: the E-413.00 (bench-top), the E-413.0E OEM version and the E-413.D2 for DuraAct[™] patch transducers. The first two can output and sink peak currents of 100 mA in a voltage range of -250 to +250 V, corresponding to the standard range of PI PICA[™] Shear piezo actuators see page 1-24 *ff*.

The E-413 is a stand-alone,

The E-413.D2 is designed for driving P-876 DuraAct[™] piezoelectric patch transducers; it offers a peak output power of 50 W with an operating voltage of -100 to +400 V.

Open-Loop Operation

E-413 piezo amplifier modules provide precision control for piezo shear and bender actuators both in static and dynamic operation.

The output voltage is determined by an analog signal at the control input, combined with an optional DC-offset (external potentiometer not included) amplified by factor 50.

Remote Control via Computer Interface

Optionally, digital control via a D/A converter is possible. For several D/A boards from National Instruments, PI offers a corresponding LabVIEW[™] driver set which is compatible with the PI General Command Set (GCS), the command set used by all PI controllers. A further option includes the patented Hyperbit[™] technology providing enhanced system resolution.

Operation / Contents of Delivery

Only a single, unipolar, stabilized voltage input of 24 V is required to operate the E-413. An integrated DC/DC converter generates the PZT operating voltage and all other voltages used internally. All inputs and outputs are via the male, 32-pin, rear connector. A matching female, 32-pin connector is included.

Please read general information on piezo amplifiers see page 6-52.

Ordering Information

E-413.D2

Piezo Amplifier for DuraAct™ Patch Transducers, -100 to +400 V

E-413.00

Piezo Amplifier for PICA™ Shear Actuators, -250 to +250 V, Bench Top

E-413.OE

Piezo Amplifier for PICA[™] Shear Actuators, -250 to +250 V, OEM Module

Accessories:

E-500.ACD CD with Driver Set for Analog Controllers

E-500.HCD

Hyperbit™ Functionality for Enhanced System Resolution (Supports certain D/A boards.)

E-413: operating limits with various PZT loads, capacitance is measured in nF

War

Technical Data

	E-413.00	E-413.OE	E-413.D2
Function	Power amplifier for PICA™ Shear piezo actuators, bench-top	Power amplifier for PICA™ Shear piezo actuators, OEM module	Power amplifier for DuraAct™ piezoelectric patch transducers, OEM module
Amplifier			
Input voltage range	-5 to +5 V	-5 to +5 V	-2 to 8 V
Output voltage range	-250 to 250 V	-250 to 250 V	-100 to 400 V
Amplifier channels	1	1	1
Peak output power	50 VA	50 VA	50 VA
Average output power	<12 VA	<12 VA	<6 VA
Peak current	100 mA	100 mA	100 mA
Average current	24 mA	24 mA	12 mA
Current limitation	Short-circuit proof	Short-circuit proof	Short-circuit proof
Voltage gain	50 ±0.1	50 ±0.1	50 ±0.1
Ripple, noise, <10 kHz	100 mV _{P-P} @100 nF	100 mV _{P-P} @100 nF	100 mV _{P-P} @100 nF
Amplifier resolution	<10 mV	<10 mV	<10 mV
Input impedance	100 kΩ	100 kΩ	100 kΩ
Interface and operation			
Piezo connector	Conec Sub-D 5W1 with HV (rear)	DIN 41612, 32-pin. (rear)	DIN 41612, 32-pin. (rear)
Control input voltage	SMB connector (rear)	DIN 41612, 32-pin. (rear)	DIN 41612, 32-pin. (rear)
Miscellaneous			
Operating temperature range	+5 °C to +50 °C (10 % derated over 40 °C)	+5 °C to +50 °C (10% derated over 40 °C)	+5 °C to +50 °C (10% derated over 40 °C)
Dimensions	220 x 105 x 54 mm	14T wide 3H wide	7T wide 3H wide
Mass	1.14 kg	0.8 kg	0.4 kg
Operating voltage	24 V / 2 A	24 V / 2 A	24 V / 1 A
Power consumption	48 W	48 W	24 W

Tutorial

Working Principle

The term *piezo* is derived from the Greek word for pressure. In 1880 Jacques and Pierre Curie discovered that an electric potential could be generated by applying pressure to quartz crystals; they named this phenomenon the *piezoelectric effect*. Later they ascertained that when exposed to an electric potential, piezoelectric materials change shape. This they named the *inverse piezoelectric effect*.

The piezo effect is used for sensor functionality, while actuator behavior uses the inverse piezo effect.

The piezoceramic plates in DuraActTM patch transducers resemble a capacitor. The ceramic acts as a dielectric between its metallized surfaces. When voltage is applied, an electric field is created inside the ceramic. The field causes a uniform lateral contraction of the ceramic perpendicular to the direction of the electric field (Fig. 1). This behavior is called the transverse piezoelectric effect (d₃₁ effect, Fig.2).

The electric field strength determines the magnitude of the lateral contraction. This is the key to simple control of the transducer modules. When the modules are glued to a substrate, they effectively transfer force over the whole surface, not only at selected points, as with conventional actuators. Conversely, DuraAct[™] patch transducers transform changes in shape to electric current, thereby enabling their use as sensors or energy sources.

The piezoceramic response to a change of the electric field or to deformation is extremely fast. Vibrations in the kilohertz range can be produced or detected. Different excitation voltages are required and different contraction amounts possible, depending on the ceramic type and its dimensions. The correlation between displacement and applied voltage is not linear. A voltage-todisplacement curve with the typical hysteresis behavior is shown in Fig. 3.

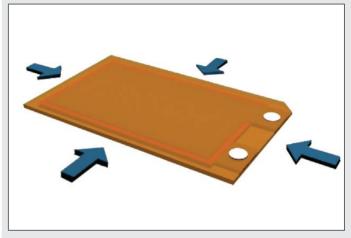


Fig. 1: Lateral contraction

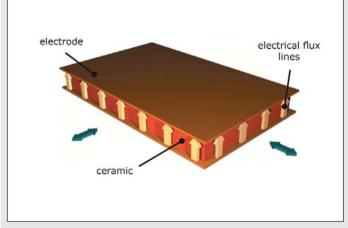
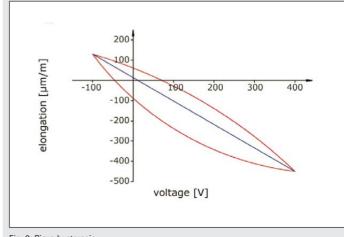



Fig. 2: d₃₁ effect

Technology

DuraAct[™] patch transducers operate as sensors with varying bandwidths—reacting to mechanical strain like impact, bending or pressure—and as high-precision positioning or bending actuators.

The standard transducer design features a piezoceramic foil with metalized surfaces for electrical contact (Fig. 4). The thickness of standard foils used is typically 100 to 500 µm, with even thinner layers possible. Without further processing, these piezoceramic elements are brittle and difficult to handle. Embedding them in a polymer structure provides electrical insulation and mechanical stability. The result is a module that is ductile and extremely robust.

An alternative design features multiple layer piezoceramics, enhancing force generation for the same operating voltage.

Working Diagram

The actuator properties of piezoceramic transducers are essentially described by two parameters: the blocking force F_B and the free displacement, S_0 . When a voltage U is applied to the free (unblocked) actuator, it reaches its maximum displacement S_0 . The force required to prevent any length change at all is called the blocking force, F_B (Fig. 5).

A graph of applied force versus actuator displacement is called the actuator characteristic curve (Fig. 7). It basically follows the line passing through the points with 0 force and 0 displacement described above. In most cases the actuator acts against an elastic structure, DuraAct[™] patch transducers are solid state actuators and therefore have no moving parts. Wear and failure rates are low. Electrical contact is realized by soldering, clamping or gluing leads to two pads. Connecting multiple layers separately allows separation of the sensor and actuator functionality, meaning that the transducer can be used as sensor and actuator simultaneously.

e.g. when a spring or a metal

sheet is deformed (Fig. 6). If the

load is represented by a spring

(characteristic curve of the

spring) with stiffness of c_{E} , the

resulting operating point is the

intersection of the load line

with the actuator characteristic

curve (Fig. 7). The most effec-

tive operation occurs when the

operating point is in the middle

of the characteristic curve.

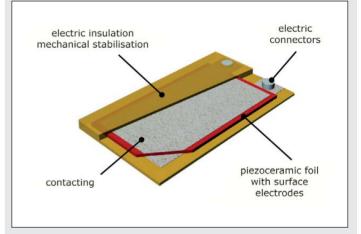


Fig. 4: DuraAct™ transducer design principle

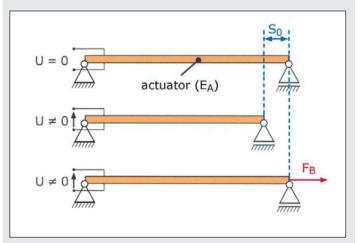


Fig. 5: Parameter definitions

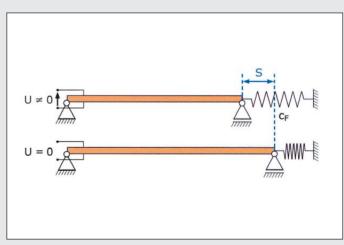


Fig. 6: Application of a spring force to an actuator

Parameters for Bender Actuators

DuraAct[™] actuators are usually glued to a substrate and transfer the contraction not at a few attachment points, but over the whole surface. In such a configuration, the DuraAct[™]/ substrate combination acts as a bender actuator. Bender actuators provide fast, high-precision and repeatable deflection and are used in a wide range of applications, e.g. in printers, valves, and in the textile industry. DuraAct[™] patch transducers are based on the transverse piezo effect, and therefore contract with an electric field applied. The bender flexes and exerts a normal force as shown in Fig. 8. For the free, unblocked bender, the free deflection is W_0 . The force required to reduce the deflection to zero is called the bender blocking force F_{BW}. It is significantly smaller than the actuator blocking force. The line through these two points, gives the characteristic curve for the bender. Fig. 9 and 10 show curves relating the maximum deflection W_0 and the maximum force F_{BW} to the substrate thickness and elasticity. These diagrams show the actual deflections and forces measured with 50 mm substrate samples made of different materials and a P-876.A15 DuraAct[™] patch transducer. Together with the characteristic curve for the DuraAct[™] alone, the bender characteristics form the basis for effectively estimating the actuator performance in a specific application. PI therefore includes these curves on all datasheets.

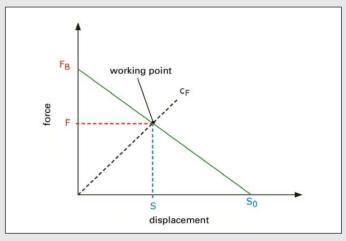


Fig. 7: Characteristic curve with spring load line

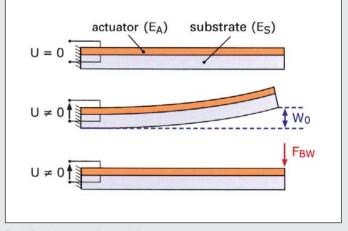


Fig. 8: Bender actuator characteristics

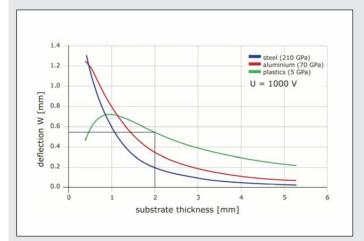


Fig. 9: Free deflection of bender actuators

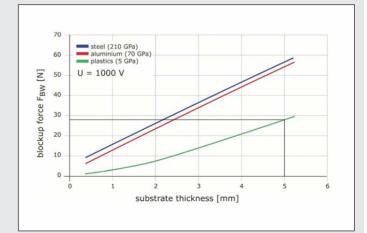
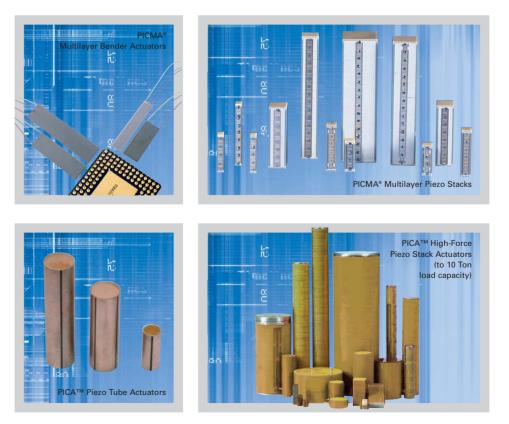


Fig. 10: Bender actuator blocking force

Power Requirements

To determine the required electrical power for successful actuator operation, the electrical capacitance must be known. Typical DuraAct™ capacitances are in the nanofarad range and can be found in the datasheets.

The electrical capacitance, C, depends on the piezoceramic type, thickness and area. For an estimation of the average electrical power, P_m , knowledge of the operating voltage range and the excitation frequency is necessary.


 $P_m = C \cdot f \cdot U_h^2$

f: Frequency U_h: Voltage swing

The maximum power required P_{max} is then just the average power times pi (π):

 $P_{max} = P_m \cdot \pi$

In addition to DuraAct[™] patch transducers, PI manufactures a large variety of high-performance, high-load piezo actuators (multilayer stacks, highvoltage stacks, multilayer benders, etc.)

Headquarters

PI Ceramic GmbH

Lindenstr. D-07589 Lederhose Tel: +49 (36604) 882-0 Fax: +49 (36604) 882-25 info@piceramic.com www.piceramic.com

Physik Instrumente (PI) GmbH & Co. KG Auf der Römerstr. 1 D-76228 Karlsruhe/Palmbach Tel: +49 (721) 4846-0 Fax: +49 (721) 4846-100 info@pi.ws · www.pi.ws

Subsidiaries

USA (East) & CANADA

PI (Physik Instrumente) L.P. 16 Albert St. Auburn, MA 01501 Tel: +1 (508) 832 3456 Fax: +1 (508) 832 0506 info@pi-usa.us www.pi-usa.us

JAPAN

PI Japan Co., Ltd. Akebono-cho 2-38-5 Tachikawa-shi J-Tokyo 190 Tel: +81 (42) 526 7300 Fax: +81 (42) 526 7301 info@pi-japan.jp www.pi-japan.jp

CHINA

Physik Instrumente (PI Shanghai) Co., Ltd. Building No. 7-301 Longdong Avenue 3000 201203 Shanghai, China Tel: +86 (21) 687 900 08 Fax: +86 (21) 687 900 98 info@pi-china.cn www.pi-china.cn

FRANCE

PI France S.A.S. 32 rue Delizy F-93694 Pantin Cedex Tel: +33 (1) 481 039 30 Fax: +33 (1) 481 008 03 pi.pic@polytec-pi.fr www.polytec-pi.fr

USA (West) & MEXICO

PI (Physik Instrumente) L.P. 5420 Trabuco Rd., Suite 100 Irvine, CA 92620 Tel: +1 (949) 679 9191 Fax: +1 (949) 679 9292 info@pi-usa.us www.pi-usa.us

PI Japan Co., Ltd. Hanahara Dai-ni Building, #703 4-11-27 Nishinakajima, Yodogawa-ku, Osaka-shi J-Osaka 532 Tel: +81 (6) 6304 5605 Fax: +81 (6) 6304 5606 info@pi-japan.jp www.pi-japan.jp

GREAT BRITAIN

Lambda Photometrics Ltd. Lambda House Batford Mill GB-Harpenden, Hertfordshire AL5 5BZ Tel: +44 (1582) 764 334 Fax: +44 (1582) 712 084 pi@lambdaphoto.co.uk www.lambdaphoto.co.uk

ITALY

Physik Instrumente (PI) S.r.I. Via G. Marconi, 28 I-20091 Bresso (MI) Tel: +39 (02) 665 011 01 Fax: +39 (02) 665 014 56 info@pionline.it www.pionline.it

For more information on piezoceramic materials and components, see the PI Ceramic catalogs and Website (www.piceramic.de).

For more information on these and other PI product lines, see the Physik Instrumente (PI) Nanopositioning catalog and website (www.pi.ws).

Program Overview

- Piezoelectric Actuators
- Piezo Nanopositioning Systems and Scanners
- Active Optics / Tip-Tilt Platforms
- Capacitive Sensors
- Piezo Electronics: Amplifiers and Controllers
- Hexapods
- Micropositioners
- Positioning Systems for Fiber Optics, Photonics and Telecommunications
- Motor Controllers
- PILine[®] High-Speed Ceramic Linear Motors

BRO07E