P-611.1 Piezo Nanopositioner Cost-Effective, Compact Linear Positioning System

P-611.1 linear nanopositioning system, 100 µm travel, resolution of 0.2 nm

- Compact Design: Footprint 44 x 44 mm
- Travel Range to 120 µm

P

- Resolution to 0.2 nm
- Cost-Effective Mechanics/Electronics System Configurations
- Outstanding Lifetime Due to PICMA® Piezo Actuators
- Z Stage, XY, XZ and XYZ Versions Available

P-611.1 piezo stages are flexure-guided nanopositioning systems featuring a compact footprint of only 44 x 44 mm. The linear stages described here are part of the P-611 family of positioners available in 1 to 3 axis configurations. Despite their small dimensions, the systems provide up to 120 µm travel with sub-nanometer resolution. They are ideally suited for positioning tasks such as optical-path length correction in interferometry, sample positioning in microscopy or scanning applications. Equipped with ceramic-encapsulated piezo drives and a stiff zero-stiction, zero-friction flexure guiding

Application Examples

- Micromachining
- Microscopy
- Micromanipulation
- Semiconductor testing

system, all P-611 piezo stages combine millisecond responsiveness with nanometric precision and extreme reliability.

Closed-Loop and Open-Loop Versions

High-resolution, fast-responding, strain gauge sensors (SGS) are applied to appropriate locations on the drive train and provide a high-bandwidth, nanometer-precision position feedback signal to the controller. The sensors are connected in a full-bridge configuration to eliminate thermal drift, and assure optimal position stability in the nanometer range.

The open-loop models are ideal for applications where fast response and very high resolution are essential, but absolute positioning is not important. They can also be used when the position is controlled by an external feedback system such as an interferometer, a PSD (position sensitive diode), CCD chip / image processing system, or the eyes and hands of an operator.

Versatility & Combination with Motorized Stages

The P-611 family of piezo stages comprises a variety of single- and multi-axis versions (X, XY, Z, XZ and XYZ) that can be easily combined with a number of very compact manual or motorized micropositioning systems to form coarse/fine positioners with longer travel ranges (see p. 2-36, 2-50 *ff*).

High Reliability and Long Lifetime

The compact P-611 systems are equipped with preloaded PICMA[®] high-performance piezo actuators which are inte-

Ordering Information

P-611.10 Linear Nanopositioning System, 120 μm, No Sensor

P-611.1S Linear Nanopositioning System, 100 μm, SGS-Sensor

grated into a sophisticated, FEA-modeled, flexure guiding system. The PICMA® actuators feature cofired ceramic encapsulation and thus offer better performance and reliability than conventional piezo actuators. Actuators, guidance and sensors are maintenance-free and not subject to wear, and thus offer an extraordinary reliability.

System properties	
System configuration	P-611.1S and E-665.SR controller, 30 g load
Closed-loop amplifier bandwidth, small signal	45 Hz
Settling time (10% step width)	18 ms

Linear Actuators & Motors

Nanopositioning/Piezoelectrics Piezo Flexure Stages / High-Speed Scanning Systems Linear Vertical & Tip/Tilt 2- and 3-Axis 6-Axis Fast Steering Mirrors / Active Optics Piezo Drivers / Servo Controllers Single-Channel Multi-Channel Modular Accessories Piezoelectrics in Positioning Nanometrology

Micropositioning

Index

Technical Data

Model	P-611.1S	P-611.10	Unit	Tolerance
Active axes	Х	Х		
Motion and positioning				
Integrated sensor	SGS	-		
Open-loop travel, -20 to 120 V	120	120	μm	min. (+20 %/0 %
Closed-loop travel	100	-	μm	calibrated
Open-loop resolution	0.2	0.2	nm	typ.
Closed-loop resolution	2	-	nm	typ.
Linearity, closed-loop	0.1	-	%	typ.
Repeatability	<10	-	nm	typ.
Pitch	±5	±5	µrad	typ.
Yaw	±20	±20	µrad	typ.
Flatness	10	10	nm	typ.
Mechanical properties				
Stiffness in motion direction	0.2	0.2	N/µm	±20%
Unloaded resonant frequency	400	400	Hz	±20%
Resonant frequency @ 30 g	300	300	Hz	±20%
Resonant frequency @ 100 g	195	195	Hz	±20%
Push/pull force capacity in motion direction	15 / 10	15 / 10	Ν	Max.
Load capacity	15	15	Ν	Max.
Drive properties				
Ceramic type	PICMA® P-885	PICMA® P-885		
Electrical capacitance	1.5	1.5	μF	±20%
Dynamic operating current coefficient	1.9	1.9	μA/(Hz•μm)	±20%
Miscellaneous				
Operating temperature range	-20 to 80	-20 to 80	°C	
Material	Aluminum, steel	Aluminum, stee	I	
Dimensions	44 x 44 x 17	44 x 44 x 17	mm	
Mass	0.135	0.135	kg	±5%
Cable length	1.5	1.5	m	±10 mm
Voltage connection	LEMO	LEMO		
Sensor connector	LEMO	-		

Resolution of PI Piezo Nanopositioners is not limited by friction or stiction. Noise equivalent motion with E-503 amplifier (p. 2-146). Dynamic Operating Current Coefficient in µA per Hz and µm. Example: Sinusoidal scan of 50 µm at 10 Hz requires approximately 0.9 mA drive current.

Recommended controller / amplifier E-610 servo controller / amplifier (p. 2-110), E-625 servo controller, bench-top (p. 2-114), E-665 powerful servo controller, bench-top (p. 2-116), for open-loop systems: E-660 bench-top (p. 2-119) for multiple independent axes: E-621 controller module (p. 2-160)

Moving the NanoWorld_|_www.pi.ws

P-611.3 NanoCube® XYZ Piezo Stage

Compact Multi-Axis Piezo System for Nanopositioning and Fiber Alignment

NanoCube® XYZ-nanopositioning system, 100 x 100 x 100 µm closed-loop travel range, resolution 1 nm

- Up to 120 x 120 x 120 μm Travel Range
- Very Compact: 44 x 44 x 44 mm
- Resolution to 0.2 nm, Rapid Response
- Frictionless, High-Precision Flexure Guiding System
- Outstanding Lifetime Due to PICMA® Piezo Actuators
- Fast Multi-Axis Scanning
- Version with Integrated Fiber Adapter Interface
- Cost-Effective Mechanics/Electronics System Configurations

The P-611 NanoCube[®] piezo stage is a versatile, multi-axis piezo-nanopositioning system. Its 100 x 100 x 100 µm positioning and scanning range comes in an extremely compact package of only 44 x 44 x 44 mm. Equipped with a stiff, zero-stiction, zero-friction guiding system, this NanoCube® provides motion with ultra-high resolution and settling times of only a few milliseconds. The minimal moved masses and the stiff for data sheets is available **Application Examples**

- Photonics / integrated optics
- Micromanipulation
- Biotechnology
- Semiconductor testing
- Fiber positioning

piezo drive make it ideal for high-throughput applications such as fiber alignment where it enables significantliy faster device characterization than achievable with conventional motorized drives.

Closed-Loop and Open-Loop Versions

High-resolution, fast-responding, strain gauge sensors (SGS) are applied to appropriate locations on the drive train and provide a high-bandwidth, nanometer-precision position feedback signal to the controller. The sensors are connected in a full-bridge configuration to eliminate thermal drift, and assure optimal position stability in the nanometer range.

The open-loop models are ideal for applications where fast response and very high resolution are essential, but absolute

positioning is not important, e.g. in tracking or fiber positioning. They can also be used when the position is controlled by an external linear position sensor such as an interferometer, a PSD (position sensitive diode), CCD chip / image processing system, or the eyes and hands of an operator.

Versatility & Combination with Motorized Stages

The P-611 family of piezo stages comprises a variety of singleand multi-axis versions (X, XY, Z, XZ and XYZ) that can be easily combined with a number of very compact manual or motorized micropositioning systems to form coarse/fine positioners with longer travel ranges (see p. 2-20, p. 2-36 and p. 2-50). For fiber positioning tasks, several fiber, waveguide and optics adapters are available for mounting on the NanoCube® P-611.3SF (e.g. for combination with the F-206.S nanoalignment system see p. 4-12).

High Reliability and Long Lifetime

The compact P-611 systems are equipped with preloaded

Ordering Information

P-611.3S

NanoCube[®] XYZ Nanopositioning System, 100 x 100 x 100 µm, Strain Gauge Sensors

P-611.30

NanoCube® XYZ Nanopositioning System, 100 x 100 x 100 µm, Open-Loop

P-611.3SF

NanoCube[®] XYZ Nanopositioning System, 100 x 100 x 100 µm, Strain Gauge Sensors, Fiber Adapter Interface

P-611.30F

NanoCube[®] XYZ Nanopositioning System, 100 x 100 x 100 µm, Open-Loop, Fiber Adapter Interface

PICMA® high-performance piezo actuators which are integrated into a sophisticated, FEA-modeled, flexure guiding system. The PICMA® actuators feature cofired ceramic encapsulation and thus offer better performance and reliability than conventional piezo actuators. Actuators, guidance and sensors are maintenance-free and not subject to wear, and thus offer an extraordinary reliability.

1

newest release

Technical Data

Model	P-611.3S P-611.3SF	P-611.3O P-611.3OF	Units	Tolerance
Active axes	X, Y, Z	X, Y, Z		
Motion and positioning				
Integrated sensor	SGS			
Open-loop travel, -20 to +120 V	120 / axis	120 / axis	μm	min. (+20%/0%
Closed-loop travel	100 / axis	-	μm	
Open-loop resolution	0.2	0.2	nm	typ.
Closed-loop resolution	1	-	nm	typ.
Linearity	0.1	-	%	typ.
Repeatability	<10	-	nm	typ.
Pitch in X,Y	±5	±5	µrad	typ.
Runout θ_X (Z motion)	±10	±10	µrad	typ.
Yaw in X	±20	±20	µrad	typ.
Yaw in Y	±10	±10	µrad	typ.
Runout θ_{Y} (Z motion)	±10	±10	µrad	typ.
Mechanical properties				
Stiffness	0.3	0.3	N/µm	±20%
Unloaded resonant frequency X / Y / Z	350 / 220 / 250	350 / 220 / 250	Hz	±20%
Resonant frequency @ 30 g X / Y / Z	270 / 185 / 230	270 / 185 / 230	Hz	±20%
Resonant frequency @ 100 g X / Y / Z	180 / 135 / 200	180 / 135 / 200	Hz	±20%
Push/pull force capacity in motion direction	+15 / -10	+15 / -10	N	Max.
Load capacity	15	15	Ν	Max.
Drive properties				
ceramic type	PICMA® P-885	PICMA® P-885		
Electrical capacitance	1.5	1.5	μF	±20%
Dynamic operating current coefficient	1.9	1.9	μΑ/(Hz • μm)	±20%
Miscellaneous				
Operating temperature range	-20 to 80	-20 to 80	°C	
Material	Aluminum, steel	Aluminum, steel		
Dimensions	44 x 44 x 43.2 SF-version: 44 x 50 x 44.2	44 x 44 x 43.2 OF-version: 44 x 50 x 44.2	mm	
Mass	0.32	0.32	kg	±5%
Cable length	1.5	1.5	m	±10 mm
Sensor connector	Sub-D	-		
Voltage connection	Sub-D	Sub-D		
Recommended controller / amplifier	E-664 Nanocube [®] Controller (p. 2-137)	3 x E-610.00F OEM amplifier modules (p. 2-110); E-663 3-channel amplifier, bench-top (p. 2-136)		

Resolution of PI Piezo Nanopositioners is not limited by friction or stiction. Value given is noise equivalent motion with E-503 amplifier (p. 2-146) Dynamic Operating Current Coefficient in µA per Hz and µm. Example: Sinusoidal scan of 50 µm at 10 Hz requires approximately 0.8 mA drive current. Adapter cable with LEMO connectors for sensor and operating voltage available.