Category: Nanopositioning

Ultra-High Precision AFM with 6-Axis Laser and Piezo Scanner for Traceable Measurements on Semiconductors and Step Standards

Atomic force microscopy (AFM) is used for surface measurements with resolution down to atomic levels – dimensions that are far beyond even the highest resolution optical microscopes. AFM is a noncontact procedure, with forces between a very fine measuring tip and the object surface revealing information about the topography, chemical surface condition, defects, etc. Atomic […]

Electron Microscopy: Nonmagnetic Drives and Stages for Vacuum

Electron microscopy allows investigations with extremely high lateral resolution down to a range of less than one nanometer. However, this places great demands on the imaging elements. And, of course, the specimens need to be positioned with the same precision to give meaningful measured results. Drives and positioning systems therefore perform important tasks in electron […]

Raman Imaging and AFM Microscopy with Piezo-Flexure Based Nanopositioning Stages

Very often individual classical microscopic methods are no longer sufficient in terms of optical resolution or information content. The combination of different microscopic methods yields more extensive and more accurate measurement data. This combination of methods makes high demands on the individual components of the microscopes, and the sample positioning mechanisms. Ultra-High Resolution Microscopy in […]

Measuring the Smallest Resolution of a Positioning Stage

The trace above, measured by a laser interferometer, shows peak-to peak noise (black) of a linear motor positioning system on the order of 1.8 nm (controller is actively holding a position, no position change commanded). The noise measured by the external metrology (laser) contains the sum of all mechanical and electrical sources – the amplifier […]

Sensor Influence on the Precision of Piezo Positioning Stages

The choice of feedback sensor is one of the key performance factors of a piezo positioning stage. Below is a comparison between the two most commonly used sensors. When the absolute positioning information plays a critical role in scientific results, researchers prefer capacitive sensors. When cost is most important and / or results are based […]

Why To Use Air Bearing Stages Over Mechanical Bearings

Most motion applications are perfectly well-served by mechanical bearing guidance; but there are many cases where precision, angular repeatability, and geometric performance must be optimal or where vibration and sub-micron bearing rumble is problematic. An air-bearing stage can help in these situations. An air-bearing stage is a rotary or linear positioner that floats on a […]

Silicon Photonics Test and Alignment

The need for higher performance computing and data-communication speed has led to the advent of silicon photonics. In addition, to higher performance, silicon photonics can also reduce the power requirements of next generation server farms significantly. Challenges With the advantages, this new technology also brings about several production challenges, including the need for test platforms […]

Follow the PI Blog!

Enter your email to subscribe and receive notifications of new posts by email.

About PI

PI (Physik Instrumente) is a leading manufacturer of precision motion control equipment, piezo motors, air bearing stages and hexapod parallel-kinematics for semiconductor applications, photonics, bio-nano-technology and medical engineering. PI has been developing and manufacturing standard & custom precision products with piezoceramic and electromagnetic drives for 4 decades. The company has been ISO 9001 certified since 1994 and provides innovative, high-quality solutions for OEM and research. PI is present worldwide with fifteen subsidiaries, R&D / engineering on 3 continents and total staff of more than 1,000.

USA / Canada
www.pi-usa.us | info@pi-usa.us

EAST
(508) 832-3456
MIDWEST
(508) 832-3456
WEST
(949) 679-9191 (LA Area & Mexico)
(408) 533-0973 (Silicon Valley/Bay Area)